

PROGRAMA ANALÍTICO

FACULTAD: INGENIERÍA

DEPARTAMENTO: CIENCIAS BÁSICAS

CARRERA: INGENIERÍA QUÍMICA

INGENIERÍA MECÁNICA

INGENIERÍA ELECTRICISTA

INGENIERÍA TELECOMUNICACIONES

PLAN DE ESTUDIO: 1994 - 2005 - 2004 - 2010

MODALIDAD DE CURSADO: PRESENCIAL

ORIENTACIÓN: Ingeniería Electricista:

Sistemas Electrónicos Industriales

Sistemas Eléctricos de Potencia

Ingeniería en Telecomunicaciones:

Radio Comunicaciones y Telecomunicaciones (E1)

Servicios de Datos y Sistemas Multimediales (E2)

Sistemas Embebidos (E3)

ASIGNATURA: MÉTODOS NUMÉRICOS

CÓDIGO: 0408

DOCENTE RESPONSABLE:

NOMBRE	GRADO ACAD. MAX	CARGO	DEDICACIÓN
Fernando Magnago	Doctor en Ingeniería Eléctrica	Profesor Titular	Exclusiva

EQUIPO DOCENTE:

Ing. Mecánica

NOMBRE	GRADO ACAD. MAX	CARGO	DEDICACIÓN
Bruno Roccia	Magister en Ciencias de la Ingeniería	Profesor Adjunto	Semi-Exclusiva
Luis Ceballos	Magister en Ciencias de la Ingeniería	Jefe de Trabajos	Exclusiva
		Prácticos	

Ing. Electricista, Ing. Telecomunicaciones

NOMBRE	GRADO ACAD. MAX	CARGO	DEDICACIÓN
Fernando Magnago	Dr. en Ingeniería Eléctrica	Profesor Titular	Exclusiva

Ing. Química

NOMBRE	GRADO ACAD. MAX	CARGO	DEDICACIÓN
Adrián Barone	Ingeniero Químico	Jefe de Trabajos	Exclusiva
		Prácticos	

AÑO ACADÉMICO: 2019

CARÁCTER DE LA ASIGNATURA: Obligatoria

RÉGIMEN DE LA ASIGNATURA: Cuatrimestral

<u>UBICACIÓN EN EL PLAN DE ESTUDIO</u>:

- QUÍMICA: 2DO. CUATRIMESTRE DE 2DO. AÑO
- MECÁNICA, ELECTRICISTA, TELECOMUNICACIONES: 2DO. CUATRIMESTRE DE 3ER. AÑO

RÉGIMEN DE CORRELATIVIDADES:

QUÍMICA:

Aprobada	Regular	
0404	0407	
0401	0402	

MECÁNICA - ELECTRICISTA (*):

Aprobada	Regular
0411	0407
0402	
0405	

(*) Para cursar asignaturas de tercer año en adelante se debe haber rendido Inglés Nivel I

TELECOMUNICACIONES:

Aprobada	Regular
0407	
0402	
0405	

ASIGNACIÓN DE HORAS:

QUÍMICA - ELECTRICISTA:

Horas Totales			(90 h.)
	Semanales		(6 h.)
	Teóricas		(30 h.)
	Prácticas	Resolución de problemas	(30 h.)
		Laboratorio	(30 h.)
		Proyecto	(h.)
		Trabajo de campo	(h.)
Teórico-Prácti		is	(h.)

MECÁNICA:

Horas Totales			(90 h.)
	Semanales		(6 h.)
	Teóricas		(30 h.)
-		Resolución de problemas	(30 h.)
	Prácticas	Laboratorio	(27 h.)
		Proyecto	(3 h.)
		Trabajo de campo	(h.)
	Teórico-Práctica	s	(h.)

TELECOMUNICACIONES:

Horas Totales			(90 h.)
	Semanales		(6 h.)
	Teóricas		(45 h.)
		Resolución de problemas	(22,5 h.)
	Prácticas	Laboratorio	(22,5 h.)
		Proyecto	(h.)
		Trabajo de campo	(h.)
	Teórico-Prácticas		(h.)

<u>FUNDAMENTACIÓN DE LOS OBJETIVOS, CONTENIDOS, PROPUESTA METODOLÓGICA Y EVALUACIÓN DEL PROGRAMA:</u>

La materia Métodos Numéricos, corresponde al ciclo básico de las carreras de Ingeniería Mecánica, Ingeniería Electricista, Ingeniería en Telecomunicaciones e Ingeniería Química. Es una de las asignaturas que pretende proveer de los conocimientos esenciales relacionados con la aplicación

Programa Analítico

Página 3 de 21

práctica de dos áreas básicas; matemáticas y ciencias de la computación aplicada a la carrera específica. Por lo tanto representa una de las primeras materias donde el alumno empieza a comprender la aplicación de las ciencias básicas en el contexto de las distintas especialidades de su carrera..

El objetivo principal que se pretende alcanzar en el desarrollo de esta asignatura, es conocer las bases, fundamentos e implementación computacional de los análisis matemáticos que más se utilizan en Ingeniería.

La propuesta para el desarrollo de esta asignatura, es partir, cuando sea posible, de los conocimientos análogos ya vistos en las materias previas de matemática e informática, a los fines de entender la implementación práctica (programas de computadora) de métodos matemáticos.

Los métodos numéricos, serán desarrollados conjuntamente con ejemplos, problemas de aplicación, y con la correspondiente implementación en computadora.

A los fines de evaluar los aprendizajes requeridos, se propone diversas instancias de evaluación

OBJETIVOS PROPUESTOS:

El objetivo principal de los métodos numéricos es encontrar soluciones aproximadas (numéricas) a problemas complejos utilizando sólo las operaciones más simples de la aritmética e identificando los procedimientos por medio de los cuales las computadoras puedan realizar este trabajo con la mayor exactitud y rapidez posible.

Al finalizar este curso el alumno sabrá resolver problemas matemáticos implementando métodos numéricos en la computadora, analizando los resultados críticamente.

Para ello deberá adquirir destreza en la modelización matemática de problemas de ingeniería, en la selección de los métodos numéricos para cada caso, y en su implementación en la computadora.

COMPETENCIAS:

Competencias genéricas:

- Desempeñarse de manera efectiva en equipos de trabajo.
- Comunicarse con efectividad.
- Aprender en forma continua y autónoma.

Competencias específicas:

- 1-a Reconocer y respetar los puntos de vista y opiniones de otros miembros del equipo y llegar a acuerdos.
- 1-b Asumir responsabilidades y roles dentro del equipo de trabajo.

PM

- 2-a Seleccionar las estrategias de comunicación en función de los objetivos y de los interlocutores y de acordar significados en el contexto de intercambio.
- 2-b Producir e interpretar textos técnicos (memorias, informes, etc.) y presentaciones públicas.
- 3-a Reconocer la necesidad de un aprendizaje continuo a lo largo de la vida.
- 3.b Lograr autonomía en el aprendizaje.

EJES TEMÁTICOS ESTRUCTURANTES DE LA ASIGNATURA Y ESPECIFICACIÓN DE CONTENIDOS:

Los ejes temáticos, contenido, cronogramas tentativos, están diferenciados por carrera. Los mismos se describen a continuación.

CONTENIDOS INGENIERIA QUIMICA:

1. Fundamentos del Cálculo Numérico con Computadoras

Aspectos básicos del cálculo numérico.

Algoritmos numéricos.

Características de un algoritmo. Recurrencia o recursividad.

Errores y estabilidad en los Métodos Numéricos.

Origen de los errores.

Error relativo y error absoluto.

Propagación de errores.

Series de Taylor.

Programación en Métodos Numéricos.

Programación - MATLAB®.

Funciones de MATLAB®.

Graficación con MATLAB®

2. Solución Numérica de Ecuaciones No-Lineales

Ecuaciones de una variable.

Métodos de bisección, secante y Newton-Raph.on.

Método de iteración de punto fijo.

Raíces múltiples.

Análisis de errores.

Convergencia y estabilidad.

Máximos y mínimos.

Resolución de problemas y programación.

GH .

Universidad Nacional de Rto Cuarto Facultad de Ingenierta

"2019 - AÑO DE LA EXPORTACIÓN"

3. Aproximación e Interpolación de Funciones

Teoría de interpolación y aproximación polinómica.

El Teorema de Weierstrass.

Los polinomios de Taylor.

Interpolación y los Polinomios de Lagrange.

Interpolación lterada.

Interpolación mediante los polinomios cúbicos de Hermite.

Interpolación mediante "Splines".

Teoría de aproximación.

Aproximación por mínimos cuadrados.

Polinomios ortogonales.

Resolución de problemas y programación.

4. Diferenciación o Integración Numérica

Aproximación numérica de derivadas primeras.

Análisis de error.

Fórmulas para derivadas superiores.

Deducción de fórmulas.

Integración Numérica.

Fórmulas de integración de Newton-Cotes.

Cuadratura Gaussiana. Fórmula de Romberg.

Análisis de los errores.

Resolución de problemas y programación.

5. Solución Numérica de Sistemas de Ecuaciones Algebraicas Lineales y de Ecuaciones No-Lineales

Métodos Directos.

Triangularización. Eliminación Gaussiana.

Diagonalización. Método de Gauss-Jordan.

Métodos Iterativos.

Método de Jacobi.

Método de Gauss-Seidel.

Teoremas de convergencia y análisis de errores.

Matrices Ralas.

Sistemas de Ecuaciones No-Lineales.

Método de Newton-Raph.on.

Métodos Cuasi-Newton.

Resolución de problemas y uso de "software" científico.

6. Solución Numérica de Ecuaciones Diferenciales Ordinarias

Problemas de valores iniciales.

Métodos de un paso.

Métodos de Euler explícitos e implícitos.

Métodos de Runge-Kutta.

Estimación de errores.

Métodos multi-paso.

Métodos Predictores-Correctores.

Control del paso. Consistencia, estabilidad y convergencia.

Comparación de Métodos.

Problemas de valores en las fronteras.

Método de diferencias finitas.

Métodos "shooting".

Resolución de problemas y uso de "software" científico.

CRONOGRAMA DE ACTIVIDADES INGENIERIA QUIMICA: HORARIO:

Clase teórica-práctica de resolución Computadora: Viernes de 11 a 14 h.

Clase teórica-práctica de resolución Computadora: Lunes de 10 a 13 h.

Fe	echa	Tema
19/08	23/08	Aritmética de punto flotante. Error de redondeo.
		Propagación de los errores
26/08	31/08	Errores de truncación. Serie de Taylor.
		Estabilidad en los métodos numéricos
03/09	30/08	Solución numérica de Ecuaciones no lineales.
		Bisección- Punto fijo
02/09	6/09	Solución numérica de Ecuaciones no lineales.
		Newton – Secante
9/09	13/09	Sistema de ecuaciones no lineales. Optimización
16/09	20/09	Sistema de ecuaciones lineales Métodos directos e iterativos
23/09	27/09	
23/09	21109	Interpolación y Aproximación de funciones
30/10	21/10	Primer Parcial –Primer Recuperatorio
07/10	4-11/10	Interpolación y Aproximación de funciones

PM

21/10	25/10	Derivación numérica - Integración numérica
28/10	1/11	EDO- valor inicial -
11/11	15/11	EDO-Valor de frontera: Shooting Diferencias finitas-
04/11	25/11	Segundo Parcial – Segundo Recuperatorio

CONTENIDOS INGENIERIA MECANICA:

1. Fundamentos del Cálculo Numérico con Computadoras

Aspectos básicos del cálculo numérico.

Algoritmos numéricos.

Características de un algoritmo. Recurrencia o recursividad.

Errores y estabilidad en los Métodos Numéricos.

Origen de los errores.

Error relativo y error absoluto.

Propagación de errores.

Series de Taylor.

Diagramas de Flujo.

Programación en Métodos Numéricos.

Lenguajes de Alto Nivel. Programación Estructurada.

Programación - MATLAB[®].

Funciones de MATLAB®.

Graficación con MATLAB®.

2. Solución Numérica de Ecuaciones No-Lineales

Ecuaciones de una variable.

Métodos de bisección, secante y Newton-Raph.on.

Métodos Quasi-Newton.

Método de iteración de punto fijo.

Raíces múltiples.

Análisis de errores.

Convergencia y estabilidad.

Máximos y mínimos.

Resolución de problemas y programación.

QM

3. Solución Numérica de Sistemas de Ecuaciones Algebraicas Lineales y de Ecuaciones No-Lineales

Métodos Directos.

Triangularización. Eliminación Gaussiana.

Diagonalización. Método de Gauss-Jordan.

Descomposición LU, LDL^T , Factorización de Choleski LL^T .

Normas Vectoriales y Matriciales.

El problema de Autovalores Estándar.

El problema de Autovalores Generalizado.

El número de Condición de una Matriz, Matrices mal Condicionadas.

Métodos Iterativos.

Método de Jacobi.

Método de Gauss-Seidel.

Métodos de Sobre-relajación Sucesiva.

Teoremas de convergencia y análisis de errores.

Matrices Ralas.

Sistemas de Ecuaciones No-Lineales.

Método de Newton-Raph.on.

Métodos Cuasi-Newton.

Resolución de problemas y uso de "software" científico.

4. Aproximación e Interpolación de Funciones

Teoría de interpolación y aproximación polinómica.

El Teorema de Weierstrass.

Los polinomios de Taylor.

Interpolación y los Polinomios de Lagrange.

Interpolación lterada.

Interpolación mediante los polinomios cúbicos de Hermite.

Interpolación mediante "Splines".

Teoría de aproximación.

Aproximación por mínimos cuadrados.

Polinomios ortogonales.

Resolución de problemas y programación.

5. Diferenciación e Integración Numérica

Aproximación numérica de derivadas primeras.

Análisis de error.

Fórmulas para derivadas superiores.

Deducción de fórmulas.

Integración Numérica.

Universidad Nacional de Rto Cuarto Facultad de Ingenierta

"2019 - AÑO DE LA EXPORTACIÓN"

Fórmulas de integración de Newton-Cotes.

Cuadratura Gaussiana. Fórmula de Romberg.

Análisis de los errores.

Resolución de problemas y programación.

6. Solución Numérica de Ecuaciones Diferenciales Ordinarias

Problemas de valores iniciales.

Métodos de un paso.

Métodos de Euler explícitos e implícitos.

Métodos de Runge-Kutta.

Estimación de errores.

Métodos multi-paso.

Métodos Predictores-Correctores.

Control del paso. Consistencia, estabilidad y convergencia.

Comparación de Métodos.

Problemas de valores en las fronteras.

Método de diferencias finitas.

Métodos "shooting".

Resolución de problemas y uso de "software" científico.

CRONOGRAMA DE ACTIVIDADES INGENIERIA MECANICA:

Equipo de Trabajo: Bruno Roccia, Luis Ceballos

<u>Clase teórica-práctica:</u> Martes 11 a 14 h. <u>Clase teórica-práctica:</u> Viernes 10 a 13 h.

Semana	Fecha	Temas – 2019 planificados
1	13/08/2019	Fundamentos de cálculo numérico con computadora. Repaso Programación
	16/08/2019	Fundamentos de cálculo numérico con computadora. Aritmética de punto flotante.
2	20/08/2019	Fundamentos de cálculo numérico con computadora. Repaso Programación. Fundamentos de cálculo numérico con computadora. Aritmética de punto flotante.
	23/08/2019	Solución numérica de sistemas de ecuaciones algebraicas lineales. Métodos directos.
3	27/08/2019	Solución numérica de sistemas de ecuaciones algebraicas lineales. Métodos directos.

Universidad Nacional de Rto Evarto Facultad de Ingeniertu

"2019 – AÑO DE LA EXPORTACIÓN"

	30/08/2019	Solución numérica de sistemas de ecuaciones algebraicas lineales. Métodos directos. Métodos indirectos.
4	03/09/2019	Solución numérica de sistemas de ecuaciones algebraicas lineales. Métodos indirectos.
7	06/09/2019	Solución numérica de sistemas de ecuaciones algebraicas lineales. Métodos indirectos.
5	10/09/2019	Solución numérica de sistemas de ecuaciones algebraicas lineales. Métodos indirectos.
3	13/09/2019	Solución numérica de sistemas de ecuaciones no lineales
6	17/09/2019	Solución numérica de sistemas de ecuaciones no lineales
	20/09/2019	PRIMER EXAMEN PARCIAL
7	24/09/2019	Solución numérica de sistemas de ecuaciones no lineales
	27/09/2019	Problemas de autovalores estándar y generalizado.
	30/09/2019	RECUPERATORIO PRIMER EXAMEN PARCIAL
8	01/10/2019	Problemas de autovalores estándar y generalizado.
	04/10/2019	Teoría de aproximación. Interpolación de funciones. Regresión lineal. Linealización.
9	08/10/2019	Teoría de aproximación. Interpolación de funciones. Regresión lineal. Linealización.
3	11/10/2019	Teoría de aproximación. Interpolación de funciones. Regresión lineal. Linealización.
	15/10/2019	Teoría de aproximación. Interpolación de funciones. Regresión lineal. Linealización.
10	18/10/2019	Diferenciación numérica. Integración numérica. Fórmulas de integración de Newton-Cotes.
1:1	22/10/2019	Diferenciación numérica. Integración numérica. Fórmulas de integración de Newton-Cotes.
	25/10/2019	Integración numérica. Integrales impropias. Cuadratura Gaussiana.
10	29/10/2019	Integración numérica. Integrales impropias. Cuadratura Gaussiana.
12	01/11/2019	Solución numérica de ecuaciones diferenciales ordinarias. Problemas de valores iniciales.
12	05/11/2019	Solución numérica de ecuaciones diferenciales ordinarias. Problemas de valores iniciales.
13	08/11/2019	Solución numérica de ecuaciones diferenciales ordinarias. Problemas de valores iniciales.

gH

14	12/11/2019	Solución numérica de ecuaciones diferenciales ordinarias. Problemas de valores iniciales.
14	15/11/2019	Solución numérica de ecuaciones diferenciales ordinarias. Problemas de valores en la frontera.
15	19/11/2019	Solución numérica de ecuaciones diferenciales ordinarias. Problemas de valores en la frontera.
	22/11/2019	SEGUNDO EXAMEN PARCIAL
	26/11/2019	
16	29/11/2019	RECUPERATORIO SEGUNDO EXAMEN PARCIAL

Semana	Proyectos de computadora (PC)
1	PC#1: Fundamentos de cálculo numérico con computadora. Repaso Programación
4	PC#2: Solución numérica de sistemas de ecuaciones algebraicas lineales.
7	PC#1: Fundamentos de cálculo numérico con computadora. Repaso Programación PC#2: Solución numérica de sistemas de ecuaciones algebraicas lineales. PC#3: Solución numérica de sistemas de ecuaciones algebraicas lineales.
13	diferenciales ordinarias. Problemas de

CONTENIDOS INGENIERIA ELECTRICISTA:

1. Fundamentos del Cálculo Numérico con Computadoras

Aspectos básicos del cálculo numérico.

Algoritmos numéricos.

Características de un algoritmo. Recurrencia o recursividad.

Errores y estabilidad en los Métodos Numéricos.

Origen de los errores.

Error relativo y error absoluto.

Propagación de errores.

Series de Taylor.

Programación en Métodos Numéricos.

Lenguajes de Alto Nivel. Programación Estructurada.

Programación - MATLAB®.

Funciones de MATLAB®.

Graficación con MATLAB®.

2. Solución Numérica de Ecuaciones No-Lineales

Ecuaciones de una variable.

Métodos de bisección, secante y Newton-Raph.on.

Método de iteración de punto fijo.

Raíces múltiples.

Análisis de errores.

Convergencia y estabilidad.

Máximos y mínimos.

Resolución de problemas y programación.

3. Aproximación e Interpolación de Funciones

Teoría de interpolación y aproximación polinómica.

El Teorema de Weierstrass.

Los polinomios de Taylor.

Interpolación y los Polinomios de Lagrange.

Interpolación lterada.

Interpolación mediante los polinomios cúbicos de Hermite.

Interpolación mediante "Splines".

Teoría de aproximación.

Aproximación por mínimos cuadrados.

Polinomios ortogonales.

Resolución de problemas y programación.

4. Diferenciación o Integración Numérica

Aproximación numérica de derivadas primeras.

Análisis de error.

Fórmulas para derivadas superiores.

Deducción de fórmulas.

Integración Numérica.

Fórmulas de integración de Newton-Cotes.

Cuadratura Gaussiana. Fórmula de Romberg.

Análisis de los errores.

Resolución de problemas y programación.

5. Solución Numérica de Sistemas de Ecuaciones Algebraicas Lineales y de Ecuaciones No-Lineales

Métodos Directos.

Triangularización. Eliminación Gaussiana.

Diagonalización. Método de Gauss-Jordan.

Descomposición LU, LDL^T , Factorización de Choleski LL^T .

ρH

Programa Analítico

Página 13 de 21

Universidad Nacional de Rto Cuarto Tucultad de Ingenie*r*ta

"2019 - AÑO DE LA EXPORTACIÓN"

Normas Vectoriales y Matriciales.

El número de Condición de una Matriz, Matrices mal Condicionadas.

Métodos Iterativos.

Método de Jacobi.

Método de Gauss-Seidel.

Teoremas de convergencia y análisis de errores.

Matrices Ralas.

Sistemas de Ecuaciones No-Lineales.

Método de Newton-Raph.on.

Métodos Cuasi-Newton.

Resolución de problemas y uso de "software" científico.

6. Solución Numérica de Ecuaciones Diferenciales Ordinarias

Problemas de valores iniciales.

Métodos de un paso.

Métodos de Euler explícitos e implícitos.

Métodos de Runge-Kutta.

Estimación de errores.

Métodos multi-paso.

Métodos Predictores-Correctores.

Control del paso. Consistencia, estabilidad y convergencia.

Comparación de Métodos.

Problemas de valores en las fronteras.

Método de diferencias finitas.

Métodos "shooting".

Resolución de problemas y uso de "software" científico.

CRONOGRAMA DE ACTIVIDADES INGENIERIA ELECTRICISTA:

<u>Clase teórica-práctica:</u> Miércoles de 14 a 17 h. <u>Clase teórica-práctica:</u> Viernes de 14 a 17 h.

Clase teórica- práctica Miércoles de 14 a 17 h.	TEMA	Clase teórica- práctica Viernes de 14 a 17 h.	TEMA
14/08	Introducción a los Métodos Numéricos (MN)	16/08	Algoritmos numéricos
21/08	Errores, convergencia y estabilidad	23/08	Programación de MN con MATLAB
28/08	Solución numérica de ecuaciones no-lineales	301/08	Solución numérica de ecuaciones no-lineales

04/09	Sistema de ecuaciones algebraicas lineales	6/09	Sistema de ecuaciones algebraicas lineales
11/09	Sistema de ecuaciones algebraicas lineales	13/09	PRIMER PARCIAL
18/09	Interpolación y aproximación de funciones	20/09	RECUPERATORIO
25/10	Diferenciación e integración numérica	27/09	Diferenciación e integración numérica
2/10	Ecuaciones Diferenciales Ordinarias (ODEs): Problema de Valores Iniciales	4/10	Ecuaciones Diferenciales Ordinarias (ODEs): Problema de Valores Iniciales
9/10	ODEs: Problema de Valores Iniciales	11/10	Diferenciación e integración numérica
16/10	ODEs: Problema de Valores en la Frontera; Shooting	18/10	ODEs: Problema de Valores en la Frontera; Shooting
23/10	Diferencias Finitas s	25/10	Diferencias Finitas
30/10	Problemas	01/11	Problemas
06/10	Problemas	08/11	Problemas
20/11	SEGUNDO PARCIAL	22/11	RECUPERATORIO

CONTENIDOS INGENIERÍA EN TELECOMUNICACIONES:

1. Fundamentos del Cálculo Numérico con Computadoras

Aspectos básicos del cálculo numérico.

Algoritmos numéricos. Características de un algoritmo. Recurrencia y recursividad.

Errores y estabilidad en los Métodos Numéricos. Origen de los errores. Tipos de errores: error relativo y error absoluto. Series de Taylor. Propagación de errores.

Programación en Métodos Numéricos.

Diagramas de Flujo.

Lenguajes de Alto Nivel. Programación Estructurada. Programación Modular.

Programación MATLAB[®] Funciones de MATLAB[®]. Gráficos con MATLAB[®].

2. Solución Numérica de Ecuaciones No-Lineales

Ecuaciones de una variable.

Métodos de bisección, secante y Newton-Raph.on. Métodos Quasi-Newton.

Método de iteración de punto fijo.

Raíces múltiples. Análisis de errores. Convergencia y estabilidad.

Máximos y mínimos.

Resolución de problemas y uso de "software" científico.

EH .

Programa Analítico

3. Solución Numérica de Sistemas de Ecuaciones Algebraicas Lineales y de Ecuaciones No-Lineales

Métodos Directos.

Triangularización. Eliminación Gaussiana.

Diagonalización. Método de Gauss-Jordan.

Descomposición LU, LDL^T , Factorización de Choleski LL^T .

Normas Vectoriales y Matriciales.

El problema de Autovalores Estándar. El problema de Autovalores Generalizado.

El número de Condición de una Matriz, Matrices mal Condicionadas.

Métodos Iterativos.

Método de Jacobi. Método de Gauss-Seidel. Métodos de Sobre-relajación Sucesiva.

Teoremas de convergencia y análisis de errores.

Matrices Ralas.

Sistemas de Ecuaciones No-Lineales. Método de Newton-Raph.on. Métodos Cuasi-Newton.

Resolución de problemas y uso de "software" científico.

4. Aproximación e Interpolación de Funciones

Teoría de interpolación y aproximación polinómica.

El Teorema de Weierstrass. Los polinomios de Taylor.

Interpolación y los Polinomios de Lagrange. Interpolación Iterada.

Interpolación mediante los polinomios cúbicos de Hermite.

Interpolación mediante "Splines".

Teoría de aproximación.

Aproximación por mínimos cuadrados. Regresión lineal. Regresión polinómica. Regresión

lineal múltiple. Regresión lineal general. Regresión no lineal y linealización.

Polinomios ortogonales.

Resolución de problemas y uso de "software" científico.

5. Diferenciación e Integración Numérica

Aproximación numérica de derivadas ordinarias de primer orden.

Análisis de error.

Fórmulas para derivadas superiores.

Deducción de fórmulas mediante Series de Taylor.

Extrapolación de Richardson.

Integración Numérica.

Fórmulas de integración de Newton-Cotes. Regla del trapecio y regla de Simpson.

Cuadratura de Gauss. Fórmula de Romberg.

Análisis de los errores.

Integrales impropias. Integrales múltiples.

Resolución de problemas y programación.

Programa Analítico

6. Solución Numérica de Ecuaciones Diferenciales Ordinarias

Problemas de valores iniciales.

Métodos de Runge-Kutta.

Métodos de Euler. Mejoras al método de Euler.

Métodos de Runge-Kutta.

Sistemas de ecuaciones.

Métodos de Runge-Kutta adaptivos.

Rigidez y métodos multi-paso.

Problemas rígidos.

Métodos multi-paso.

Problemas de valores en las fronteras y de autovalores.

Método de diferencias finitas. Métodos "shooting".

Problemas de autovalores para ecuaciones diferenciales ordinarias.

Resolución de problemas y uso de "software" científico.

7. Aproximación de Fourier

Ajuste de curvas mediante funciones sinusoidales.

Series de Fourier continuas.

El dominio del tiempo y el dominio de las frecuencias.

Integral y transformada de Fourier.

Transformada Discreta de Fourier (DFT).

Transformada Rápida de Fourier (FFT).

El Espectro de Potencia.

Resolución de problemas y uso de "software" científico.

<u>Clase teórica-práctica:</u> Lunes 14 a 17 h. <u>Clase teórica-práctica:</u> Viernes de 13 a 16 h.

No	Fecha (semana)	Temas	Trabajos Prácticos
1	1 ra	Repaso MATLAB.	
2	1	Fundamentos de cálculo numérico con computadora.	
3	2 ^{da}	Errores y estabilidad en los métodos numéricos (aritmética de punto flotante).	T. P. Nº 1
4	2	Errores y estabilidad en los métodos numéricos (Series de Taylor).	
5	3 ^{ra}	Solución numérica de ecuaciones no lineales (una variable).	T. P. N° 2

Universidad Nacional de Rto Cuarto Trocultad de Ingenierta

"2019 – AÑO DE LA EXPORTACIÓN"

6		Solución numérica de ecuaciones no lineales (varias variables).	
7	4 ^{ta}	Análisis de errores, convergencia y estabilidad.	T. P. N° 3
8	4	Sistemas de ecuaciones algebraicas lineales (Métodos Directos),	
9	5 ^{ta}	Problema algebraico de autovalores (estándar y generalizado). Sistemas de ecuaciones algebraicas lineales (Métodos Indirectos).	T. P. N° 4
10		Ajuste de curvas por mínimos cuadrados. Linealización.	
11	6 ^{ta}	Interpolación y aproximación polinomial.	T. P. N° 5
12] 0	Interpolación por tramos; "Splines" lineales y cuadráticos	
13	7ma	Interpolación por tramos; "Splines" cúbicos	
14	/	Integración numérica. Cuadratura de Gauss. Newton-Cotes.	T. P. Nº 6
15	8 ^{va}	Integración numérica. Integrales impropias. Integrales múltiples.	
16	23/9	1° PARCIAL	
17	9 na	Diferenciación numérica. Análisis de error. Series de Taylor.	T. P. Nº 7
18	9	Diferenciación numérica. Problemas de valores en la frontera.	
19	10 ^{ma}	Diferenciación numérica. Extrapolación de Richardson.	T. P. N° 8
20	30/09	RECUPERATORIO 1º PARCIAL	
21	11 ^{ra}	Ecuaciones Diferenciales Ordinarias. Problemas de valores iniciales.	
22	11	Problemas de valores iniciales. Métodos de Runge-Kutta.	T. P. Nº 9
23	1 O da	Problemas de valores iniciales. Rigidez y métodos multipaso.	
24	12 ^{da}	Ecuaciones Diferenciales Ordinarias. Problemas de valores en las fronteras y de autovalores. Método de diferencias finitas.	T. P. Nº 10
25	100	Ecuaciones Diferenciales Ordinarias. Problemas de valores en las fronteras y de autovalores. Métodos "shooting".	
26	13 ^{ra}	Aproximación de Fourier. Ajuste de curvas mediante funciones sinusoidales.	T. P. Nº 11
27	14 ^{ta}	Integral y transformada de Fourier. Transformada Discreta de Fourier (DFT). Transformada Rápida de Fourier (FFT). El Espectro de Potencia.	T. P. Nº 12
28		Consulta	

29	15 ^{ta}	Consulta	
30	18/11	2º PARCIAL	
31	16 ^{ta}	Consulta	
32	25/11	RECUPERATORIO 2° PARCIAL	

FORMAS METODOLÓGICAS:

Las clases serán de carácter teórico- práctico. El desarrollo de las mismas abarca una exposición teórica conceptual, por parte de docentes, abarcando ejemplos prácticos de aplicación, que propicien la comprensión de los nuevos conceptos introducidos. En otros momentos de la clase se propone la resolución de ejercicios y problemas y de implementación computacional. En general se sugiere el trabajo grupal entre los estudiantes para favorecer el intercambio de propuestas y argumentaciones entre ellos. Durante ese bloque de trabajo, el equipo docente está disponible para contribuir a las discusiones que se produzcan en los grupos de trabajo. Se espera que estas prácticas sumadas a la revisión de otros problemas por parte de los estudiantes en su estudio fuera del aula, se alcancen los objetivos de aprendizaje propuestos.

<u>BIBLIOGRAFÍA OBLIGATORIA Y DE CONSULTA ESPECIFICANDO EL EJE TEMÁTICO DE LA ASIGNATURA:</u>

La bibliografía corresponde a todos los temas de la carrera.

Título	Autor/s	Editorial	Año de Edición	Ejemplares Disponibles
Numerical Methods for Engineers: with Software and Programming Applications – 6 th Edition	S. C. Chapra and R. P. Canale	McGraw-Hill	2010	
Métodos numéricos con MATLAB. Aplicación a las telecomunicaciones	J. L. Villar Santos, y P. Morillo Bosch	Universidad Politécnica de Cataluña	2003	Formato pdf
Applied Numerical Methods with MATLAB for Engineers and Scientists	S. C. Chopra	McGraw-Hill	2005	
Applied Numerical Methods for Engineers and Scientists	S. S. Rao	Prentice Hall	2000	
Análisis Numérico y Visualización Gráfica con MATLAB [®]	S. Nakamura	Prentice Hall	1997	

Il

Programa Analítico

Numerical Analysis – 8 th Edition	R. Burden and D.	Thomson	2005	
	J. Faires	Brooks/Cole		
Análisis Numérico con Aplicaciones	C. F. Gerald and	Pearson	2000	
Sexta Edición	P. O. Wheatley	Education		

HORARIO DE CLASES: Especificados por carrera en el ítem "EJES TEMÁTICOS ESTRUCTURANTES DE LA ASIGNATURA Y ESPECIFICACIÓN DE CONTENIDOS".

HORARIO Y LUGAR DE CONSULTAS:

DIA	HORARIO	LUGAR	
Lunes	9 a 13 h.	Oficina 10	
Jueves	13:30 a 15:30 h.	Planta Piloto	
Jueves	14 a 15:30 h.	Oficina 7	

REQUISITOS PARA OBTENER LA REGULARIDAD Y LA PROMOCIÓN:

Los requisitos para regularizar y promocionar la materia, fueron fijados de acuerdo a lo establecido en el punto 3.2 parte B de la Res. 120/17 del Consejo Superior de la UNRC.

Regularidad: Para acceder a la regularidad de la materia, es requisito obtener en cada parcial o instancia de recuperación una nota igual o superior a 5 (cinco).

Promoción: aquellos alumnos que habiendo aprobado los parciales o su instancia recuperatoria y además sumen 14 puntos entre las dos notas resultantes, tendrán la posibilidad de rendir un coloquio, que de aprobar significará la promoción de la materia. El coloquio en este caso es sobre temas indicados por el docente y conocidos por el alumno con 3 días de anticipación al mismo.

Examen final: Aquellos alumnos que no promocionen la materia, deberán rendir un examen final. El mismo consta de un examen escrito que incluye desarrollos de programas en computadora y de aprobarse se continua con un coloquio oral. El examen escrito difiere dependiendo si la condición del estudiante es libre o regular. La extensión del examen libre es mayor, ya que abarca un espectro más amplio de temas de la asignatura.

CARACTERÍSTICAS, MODALIDAD Y CRITERIOS DE LAS INSTANCIAS EVALUATIVAS, INCLUYENDO EXAMEN FINAL, ESTABLECIENDO TIEMPOS DE CORRECCIÓN DE LAS MISMAS Y LA DEVOLUCIÓN A LOS ESTUDIANTES:

EXÁMENES PARCIALES					
INSTANCIA EVALUATIVA	CARACTERÍSTICAS	MODALIDAD	TIEMPO DE CORRECCIÓN	TIEMPO DE DEVOLUCIÓN A LOS ESTUDIANTES	
Parcial/Recuperatorio/ Trabajo Práctico Coloquio integrador/Otros	Teórico/Práctico	Oral/Escrito/ Mixto	5 días	7 días	

EX	AMENES FINALES		
CARACTERÍSTICAS	MODALIDAD		
Alumnos promocionados	Coloquio		
Alumnos regulares	Examen escrito / Coloquio oral		
Alumnos libres	Examen escrito / Coloquio oral (espectro mas amplio		
	de temas)		

Firma Docente Responsable

Firma Secretario Académico