

Universidad Nacional de Blo Courte Facultad de Ingoniería

PROGRAMA ANALÍTICO

DEPARTAMENTO: TECNOLOGÍA QUÍMICA

CARRERA: INGENIERÍA QUÍMICA

ASIGNATURA: INGENIERÍA DE LAS REACCIONES QUÍMICAS I

CÓDIGO: 9137

AÑO ACADÉMICO: 2016

PLAN DE ESTUDIO: 1994

UBICACIÓN EN EL PLAN DE ESTUDIO: 2do. CUATRIMESTRE DE 4to. AÑO

DOCENTE A CARGO: Mg. Edith Ducrós - Profesora Asociada

EQUIPO DOCENTE: Mg. Edith Ducrós - Profesora Asociada

Dra. Miriam Martinello – Profesora Asociada Dr. Diego Acevedo – Jefe Trabajos Prácticos

RÉGIMEN DE ASIGNATURAS:

Aprobada	Regular
0408	0406
9129	2
9130	-
9131	
9133	-

ASIGNACIÓN DE HORAS:

Semanales: 10

Totales → Teóricas: 75

▶ Prácticas → Resolución de problemas: 32

▲ Laboratorio de Computación: 40

Laboratorio: 3

Trabajo de campo: -

CARÁCTER DE LA ASIGNATURA: Obligatoria

Universidad Nacional de Rio Cuarto Facultad de Ingenieria

OBJETIVOS DE LA ASIGNATURA:

El OBJETIVO GENERAL de esta asignatura es que el alumno adquiera los conocimientos necesarios para el análisis y para el diseño de los reactores químicos.

Entre los OBJETIVOS ESPECÍFICOS, se pretende que los alumnos logren:

- 1) Conocer qué información se puede obtener del análisis termodinámico y cinético de la reacción química.
- 2) Aprender a manejar los conceptos de cinética y de termodinámica químicos, las leyes de conservación de masa y de energía, y los fenómenos de transporte para aplicarlos al análisis y al dimensionamiento de reactores químicos.
- Saber seleccionar el reactor más adecuado para llevar a cabo un determinado proceso.

CONTENIDOS:

TEMA 1: INTRODUCCIÓN

- Objetivos básicos en el diseño de un reactor.
- 1.2. Bases para el diseño.
- 1.3. Clasificación de los reactores.
- 1.4. Reactores industriales.

TEMA 2: REVISIÓN DE CONCEPTOS

ESTEQUIOMETRIA.

- 2.1. Representación de las reacciones químicas
- 2.2. Reactivo limitante
- Medidas de los cambios debidos a la reacción química. 2.3.
 - 2.3.1. Grado de avance.
 - 2.3.2. Conversión.
- 2.4. Tablas estequiométricas
 - 2.4.1. Sistema discontinuo
 - 2.4.2. Sistemas de reacción a volumen constante
 - 2.4.3. Sistemas de flujo.
 - 2.4.4. Sistemas de reacción con cambio de volumen
- 2.5. Producción

EQUILIBRIO QUÍMICO.

- Constante de equilibrio.
 - 2.6.1. Variación de la K con la temperatura
- 2.7. Conversión de equilibrio.
 - 2.7.1. Influencia de la presión sobre la conversión de equilibrio
 - 2.7.2. Influencia de los inertes sobre la conversión de equilibrio

CINÉTICA DE LAS REACCIONES HOMOGÉNEAS

- Velocidad de una reacción química.
- El orden de reacción y la ley de velocidad
 - 2.9.1. Modelo de Ley de la Potencia

Universidad Nacconal de Rhe Cuarto Facultad de Ingenieria

2.9.2. Reacciones reversibles

- 2.10. Efecto de la temperatura. Ecuación de Arrhenius.
- Variación de la velocidad de reacción con la temperatura y con la conversión.

TEMA 3: DISEÑO DE REACTORES ISOTÉRMICOS HOMOGENEOS.

- 3.1. Introducción
- Balance general molar.
- 3.3. Balance de masa global.
- Reactores tanques agitados discontinuos (TAD).
 - 3.4.1. Producción en un reactor TAD
- 3.5. Reactores de flujo continuo
 - 3.5.1. Reactor tanque continuo (TAC)
 - 3.5.1.1. Aplicación de la ecuación de diseño.
 - 3.5.2. Reactores tubulares (TUB)
 - 3.5.2.1. Aplicación de la ecuación de diseño 62
 - 3.5.3. Comparación de tamaño entre reactores TAC y reactores TUB isotérmicos
 - 3.5.4. Pérdida de carga en reactores TUB
 - 3.5.4.1. Caída de presión en un lecho relleno
- Sistemas de reactores múltiples
 - 3.6.1. Reactores en serie
 - 3.6.2. Reactores tanques continuos en serie
 - 3.6.3. Reactores TAC conectados en paralelo.
 - 3.6.4. Sistemas de reactores TUB en serie
 - 3.6.5. Sistemas de reactores TUB paralelo.
- Operación de reactores en estado no estacionario.
 - 3.7.1. Puesta en marcha de un reactor TAC
 - 3.7.2. Reactores tanques agitados semicontinuos (TAS)

TEMA 4: DISEÑO DE REACTORES NO ISOTÉRMICOS HOMOGÉNEOS

- 4.1. Introducción
- 4.2. Balance de energía.
 - 4.2.1. Primera Ley de la Termodinámica.
 - 4.2.2. Evaluación del término trabajo.
 - 4.2.3. Evaluación de las entalpias.
 - 4.2.4. Relación entre ΔH_R(T), ΔH_R⁰(T) y ΔCp.
 - 4.2.5. Capacidad calorifica media o constante.
 - 4.2.6. Capacidad calorífica variable.
 - 4.2.7. Calor intercambiado por el reactor.
- 4.3. Diseño de reactores adiabáticos.
 - 4.3.1. Aplicación al reactor TAC.
 - 4.3.2. Aplicación al reactor TUB.
 - 4.3.2.1. Efecto de los inertes.
 - 4.3.2.2. Temperatura de alimentación óptima.
- Reactores con intercambio de calor.
 - 4.4.1. Aplicación al Reactor TAC
 - 4.4.2. Aplicación al Reactor TUB.

Universidad Nacional de Rio Cuarto

Facultad de Ingeniería

- 4.4.2.1. Intercambio con fluido independiente.
 - 4.4.2.1.1. Temperatura de pared constante
 - 4.4.2.1.2. Calor transferido constante
 - 4.4.2.1.3. T de pared variable. Co-corriente y contracorriente
- 4.4.2.2. Intercambio sin fluido independiente. Reactores autotérmicos
- Reactores TAC en serie. Cascada adiabática.
- 4.6. Reactores TUB en serie.
 - 4.6.1. Progresión óptima de temperatura en una cascada de TUBs.
- Operación en estado no estacionario.
 - 4.7.1. Balance de energía general
- Multiplicidad de estados estacionarios en Reactores TAC
 - 4.8.1. Calor removido.
 - 4.8.2. Calor generado.
 - 4.8.3. Curvas de ignición- extinción.
 - 4.8.4. Condición de unicidad del estado estacionario.
 - 4.8.5. Reacciones fuera de control (runaway) en reactores TAC.
- 4.9. Multiplicidad de estados estacionarios en Reactores TUB.
 - 4.9.1. Sensibilidad paramétrica.
 - 4.9.2. Reacciones fuera de control en reactores TUB.
- 4.10. Reactores discontinuos TAD
 - 4.10.1. Uso del balance de energía para el diseño isotérmico
 - 4.10.2. Diseño adiabático.
 - 4.10.3. Diseño no isotérmico con intercambio.
 - 4.10.4. Inestabilidad térmica
- Balance de energía aplicado a un reactor TAS
 - 4.11.1. Reacciones muy rápidas. Control de temperatura
- 4.12. Aproximación al estado estacionario

TEMA 5: DISEÑO PARA REACCIONES MÚLTIPLES.

- 5.1. Introducción.
- Selectividad y rendimiento.
- Maximización del producto deseado en reacciones en paralelo.
 - 5.3.1. Maximización de S para un solo reactante.
 - 5.3.2. Maximización de S para dos reactantes.
 - 5.3.3. Influencia de la temperatura.
- Maximización del producto deseado en reacciones en serie.
 - 5.4.1. Influencia de la temperatura.
- Cálculo para reacciones múltiples.

TEMA 6: FLUJO NO IDEAL

- 6.1. Distribución del tiempo de residencia en reactores químicos.
 - 6.1.1. Características generales.
 - 6.1.2. Función de distribución de tiempos de residencia (RTD).
- 6.2. Medición de la RTD.
 - 6.2.1. Señal pulso.
 - 6.2.2. Señal escalón.
- 6.3. Características de la RTD.

Programa Analítico

Universidad Nacional de Rto Cuarte

Facultad de Ingenieria

- 6.3.1. Relaciones integrales.
- 6.3.2. Tiempo de residencia medio.
- 6.3.3. Otros momentos de la RTD.
- 6.3.4. Función RTD normalizada.
- 6.4. La RTD en reactores ideales.
 - 6.4.1. La RTD en reactores TUB.
 - 6.4.2. La RTD en reactores TAC.
 - 6.4.3. Reactor de flujo laminar.
 - 6.4.4. La RTD en reactores TAC y TUB en serie.
- 6.5. Modelado del reactor.
- 6.6. Modelos de cero parámetros.
 - 6.6.1. Modelo de segregación.
 - 6.6.2. Mezclado máximo.
- 6.7. Modelos con parámetros.
 - 6.7.1. Modelos de un parámetro.
 - 6.7.1.1. Modelo de Tanques en serie.
 - 6.7.1.2. Modelo de Dispersión.
 - 6.7.1.3. Modelo de compartimentos
 - 6.7.2. Modelos de dos parámetros.
 - 6.7.2.1. Modelo con bypass y zona muerta
 - 6.7.2.2. Reactor tanque modelado con volumen de intercambio.

TEMA 7: CATÁLISIS.

- 7.1. Definición.
- 7.2. Características de la catálisis.
- 7.3. Adsorción.
- 7.4. Propiedades físicas del catalizador.
 - 7.4.1. Superficie específica.
 - 7.4.2. Volumen de poro y porosidad.
 - 7.4.3. Porosidad de un lecho catalítico.
 - 7.4.4. Radio medio y modelo de Wheeler.
 - 7.4.5. Distribución del tamaño de poro.
- 7.5. Clasificación de los catalizadores.
- 7.6. Constitución del catalizador.
- 7.7. Pérdida de actividad.
- 7.8. Preparación de los catalizadores.

TEMA 8: CINÉTICA DE LAS REACCIONES CATALÍTICAS

- 8.1. Difusión externa.
- 8.2. Reacción y difusión en catalizadores porosos.
- 8.3. Transporte de materia en el interior de catalizadores porosos.
 - 8.3.1. Transporte de materia en poros cilíndricos.
 - 8.3.2. Transporte de materia en sólidos porosos.
 - Transporte de materia en sólidos porosos con reacción química simultánea. Factor de efectividad.
 - 8.3.4. Efectos del control difusional interno sobre la velocidad de reacción

Universidad Nacional de Rto Cuarto

Facultad de Ingenieria

- 8.4. Transporte de masa en el interior de catalizadores sólidos.
- Transporte externo de masa. Factor de efectividad externo.
- Interacción entre el transporte interno y externo de masa. Factor de efectividad global isotérmico.
- 8.7. Etapas Químicas. Tratamiento de Hougen y Watson.

TEMA 9: REACTORES CATALÍTICOS INDUSTRIALES

- 9.1. Introducción.
- 9.2. Reactores con catalizador estático.
 - 9.2.1. Reactores de lecho fijo.
 - 9.2.2. Reactores monolíticos.
 - 9.2.3. Reactores 'Trickle bed'.
- 9.3. Reactores con catalizador en movimiento.
 - 9.3.1. Reactores de lecho móvil.
 - 9.3.2. Reactores de lecho fluidizado.
 - 9.3.3. Reactores de suspensión.
- 9.4. Diseño de reactores de lecho fijo.
 - 9.4.1. Modelo de flujo pistón con cinética pseudo homogénea.
 - 9.4.2. Modelo de flujo pistón con cinética heterogénea.
 - 9.4.2.1. Flujo pistón con gradiente externo de concentración.
 - 9.4.2.2. Flujo pistón con gradiente interno y externo de concentración.
 - 9.4.3. Modelo de flujo con dispersión axial y/o radial y cinética pseudo homogénea

TRABAJO PRÁCTICO DE LABORATORIO.

Flujo No Ideal.

METODOLOGÍA DE ENSEÑANZA:

Para que los alumnos logren los objetivos antes mencionados se dictarán:

- CLASES TEÓRICAS: donde se desarrollarán los contenidos de la materia tratando de motivar la participación de los alumnos en el análisis y discusión de los mismos.
- CLASES PRÁCTICAS: los alumnos resolverán problemas típicos propuestos por la cátedra en los que deberá aplicar los conceptos teóricos a distintas situaciones, interpretar y analizar resultados. Además, se realizarán trabajos de diseño asistido con computadora con el objeto de introducirlos en algunos conceptos avanzados de diseño.
- CLASE PRÁCTICA DE LABORATORIO, en las mismas se fijarán solamente los objetivos mínimos procurando no limitar a los alumnos en sus iniciativas operativas con el material de trabajo no se anticiparán los resultados o conclusiones.

MODALIDAD DE EVALUACIÓN:

Condiciones de regularización y promoción

 Asistencia al 70% de las clases. En las clases de Laboratorio se exigirá el 100% de asistencia.

Programa Analítico Página 6 de 10

Universidad Nacional de Río Cuarte Facultad de Ingeniería

 Sumando las calificaciones de cuatro parciales teóricos-prácticos se deberá obtener los siguientes puntajes:

	Regularización	Promoción
Parciales Teóricos-Prácticos	20	28

- Para lograr la promoción ningún parcial podrá tener menos de 6. Existiendo un solo recuperatorio. Además, se tomará un coloquio integrador oral al final del cuatrimestre.
- Para lograr la regularidad en caso de no alcanzar el puntaje requerido existirá una instancia de recuperación de las evaluaciones que no hayan alcanzado el puntaje 5.
- Examen final: alumno regular: consiste en una parte práctica escrita (resolución de uno o
 dos problemas) y una parte teórica oral. En el caso de los alumnos libres, además se le
 tomarán preguntas sobre los laboratorios realizados.

CRONOGRAMA DE ACTIVIDADES:

N°	Fecha	Fecha Docente Temas		Trabajos Prácticos	Observacio nes
1	17/08	Ducrós	- Introducción - Revisión de Conceptos	Teórico	
2	17/08	Acevedo Martinello	- Laboratorio asistido por computadora T.P. Nº 1		
3	18/08	Acevedo		Práctico Nº 1	
4	22/08	Ducrós	- Balance de materia Teórico - Reactores Discontinuos - Reactores Continuos		
5	24/08	Martinello Acevedo	- Laboratorio asistido por computadora	T.P. Nº 1- Nº 2	
6	24/08	Ducrós	- Pérdida de carga en Reactores TUB	Teórico	
7	25/08	Acevedo		Práctico Nº 2	
8	29/08	Ducrós	-Sistemas de Reactores Isotérmicos Múltiples	Teórico	
9	31/08	Acevedo Martinello	-Laboratorio asistido por computadora	T.P. Nº 2	
10	31/08	Ducrós	- Operación en estado no estacionario	Teórico	
11	01/09	Acevedo		Práctico Nº 2	
12	05/09	Ducròs	- Balance de energía		
13	07/09		- Laboratorio asistido por computadora	T.P. N° 2	
14	07/09	Ducrós	Balance de energía Reactores no isotérmicos de flujo continuo en estado estacionario		
15	08/09		Primer Parcial		
16	12/09	Ducrós	- Reactores no isotérmicos de flujo continuo en estado estacionario	Teórico	
17	14/09	Acevedo Martinello	-Laboratorio asistido por computadora T.P. Nº 3		

Programa Analítico Página 7 de 10

Universidad Nacional de Rio Euavio Fricultad de Ingonivota

18	14/09	Ducrós	-Sistemas de réactores no isotérmicos Múltiples	Teórico
19	15/09	Acevedo		Práctico Nº 3
20	19/09	Ducrós	Multiplicidad de estados estacionarios TAC	
21	21/09		Asueto	
22	22/09	Acevedo		Práctico Nº 3
23	26/09	Ducrós	Multiplicidad de estados estacionarios TUB Sensibilidad paramétrica	Teórico
24	28/09	Acevedo Martinello	- Laboratorio asistido por computadora	T.P. Nº 3
26	28/09	Ducrós	- Reacciones fuera de control	Teórico
27	29/09	Acevedo		Práctico Nº 3
28	03/09	Ducrós	Operación en estado no estacionario. Aproximación al estado estacionario.	Teórico
29	05/10	Martinello/ Acevedo	- Laboratorio asistido por computadora	Práctico Nº 3
30	05/10		Diseño Para Reacciones Múltiples. Selectividad y rendimiento.	Teórico
31	06/10	Acevedo		Práctico Nº 3
32	12/10		2do parcial	
-	13/10	Acevedo		Práctico Nº 4
33	17/10	Ducrós	- Reacciones en paralelo - Reacciones en serie.	Teórico
34	19/10	Martinello/ Acevedo	- Laboratorio asistido por computadora	T. P. Nº 4
35	19/10	Ducrós	Influencia de la temperatura. Cálculo para reacciones múltiples Flujo No Ideal Características de la RTD.	Teórico
36	20/10	Acevedo	- Laboratorio Flujo No Ideal	Práctico Laboratorio
37	24/10	Ducrós	La RTD en reactores ideales Modelado del reactor real Modelos de cero parámetros	
38	26/10	Martinello/ Acevedo	- Laboratorio asistido por computadora	T.P. Nº 5
39	26/10	Ducrós	Modelos de un parámetro. Modelos de dos parámetros. Teórico Teórico	
40	27/10	Acevedo	- WOLFERS OF COOP FURTHER OF	Práctico Nº 5
41	31/10	Ducrós	- Catálisis Teórico - Propiedades físicas del catalizador	
42	02/11	Martinello/ Acevedo	- Laboratorio asistido por computadora	T. P. Nº 5
43	02/11	Ducrós	Pérdida de actividad Cinéticas de las reacciones catalíticas	Teórico

Universidad Nacional de Rho Cuarto Fraultad de Ingeniería

44	03/11		Tercer Parcial	
45	07/11	Ducrós	- Cinéticas de las reacciones catalíticas. Etapas físicas	Teórico
46	09/11	Martinello/ Acevedo	- Laboratorio asistido por computadora	T.P. Nº 6
47	09/11	Ducrós	- Cinéticas de las reacciones catalíticas. Etapas físicas	Teórico
48	10/11	Acevedo		Práctico Nº 6
49	14/11	Ducrós	Cinéticas de las reacciones catalíticas. Etapas químicas.	Teórico
50	16/11	Martinello/ Acevedo	Laboratorio asistido por computadora	T.P. Nº 6
51	16/11	Ducros	Reactores catalíticos industriales. Diseño de reactores de lecho fijo	Teórico
52	17/11	Acevedo		Práctico Nº 6
53	23/11		Cuarto Parcial	
54	25/11		Recuperatorios Parciales	
55	5/12		Coloquios	

BIBLIOGRAFÍA:

Título	Autor/s	Editorial	Año de Edición	Ejemplares Disponibles
Elementos de Ingeniería de las Reacciones Químicas.	Fogler, S	Prentice Hall	2016	7
Ingeniería de las Reacciones Químicas.	Levenspiel, O	Limusa	1999	6
Chemical reactions and chemical reactors	Roberts, George W.	J. Wiley	2009	i
Ingeniería de la Cinética Química	Smith J. M	Cecsa		3
Reactores Químicos con Multireacción	Tiscareño Lechuga F	Reverté	2008	1.
Chemical reaction engineering: a first course	Ian Saxley Metcalfe	Oxford University	1997	1
The Engineering of Chemical Reactions	Schmidt L	Oxford University	1998	1
Fundamentals of Chemical Reaction Engineering	Davis and Davis	Me Graw Hill	2003	3

Programa Analítico Página 9 de 10

"Celebrando el Bicentenario de la Declaración de la Independencia Argentina y el 45º Aniversario de la Creación de la Universidad Nacional de Río Cuarto."

Universidad Nacional de Rto Cuarto Facultad de Ingeniería

Chemical Reactor Analysis and Design	Froment, Bischoff, Whilde	Wiley	2010	1
Modeling of Chemical Kinetes and Reactor Design	Coker	Gulf Proffessional Pusblishing.	2001	
Principles of Chemical Reactor Analysis and Design	Mann Uzi	Wiley	2009	
Apuntes elaborados por la cátedra				

Firma Docente Responsable

Firma Secretario Académico