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Preface

The Differential Geometry in the title of this book is the study of the geometry

of curves and surfaces in three-dimensional space using calculus techniques.

This topic contains some of the most beautiful results in Mathematics, and

yet most of them can be understood without extensive background knowledge.

Thus, for virtually all of this book, the only pre-requisites are a good working

knowledge of Calculus (including partial differentiation), Vectors and Linear

Algebra (including matrices and determinants).

Many of the results about curves and surfaces that we shall discuss are pro-

totypes of more general results that apply in higher-dimensional situations. For

example, the Gauss–Bonnet theorem, treated in Chapter 11, is the prototype of

a large number of results that relate ‘local’ and ‘global’ properties of geometric

objects. The study of such relationships formed one of the major themes of

20th century Mathematics.

We want to emphasise, however, that the methods used in this book are

not necessarily those which generalise to higher-dimensional situations. (For

readers in the know, there is, for example, no mention of ‘connections’ in the

remainder of this book.) Rather, we have tried at all times to use the simplest

approach that will yield the desired results. Not only does this keep the pre-

requisites to an absolute minimum, it also enables us to avoid some of the

conceptual difficulties often encountered in the study of Differential Geometry

in higher dimensions. We hope that this approach will make this beautiful

subject accessible to a wider audience.

It is a cliché, but true nevertheless, that Mathematics can be learned only

by doing it, and not just by reading about it. Accordingly, the book contains

over 200 exercises. Readers should attempt as many of these as their stamina

permits. Full solutions to all the exercises are given at the end of the book, but

v



vi Preface

these should be consulted only after the reader has obtained his or her own

solution, or in case of desperation. We have tried to minimise the number of

instances of the latter by including hints to many of the less routine exercises.

Preface to the Second Edition

Few books get smaller when their second edition appears, and this is not one of

those few. The largest addition is a new chapter devoted to hyperbolic (or non-

Euclidean) geometry. Quite reasonably, most elementary treatments of this sub-

ject mimic Euclid’s axiomatic treatment of ordinary plane geometry. A much

quicker route to the main results is available, however, once the basics of the

differential geometry of surfaces have been established, and it seemed a pity

not to take advantage of it.

The other two most significant changes were suggested by commentators on

the first edition. One was to treat the tangent plane more geometrically - this

then allows one to define things like the first and second fundamental forms

and the Weingarten map as geometric objects (rather than just as matrices).

The second was to make use of parallel transport. I only partly agreed with

this suggestion as I wanted to preserve the elementary nature of the book,

but in this edition I have given a definition of parallel transport and related it

to geodesics and Gaussian curvature. (However, for the experts reading this,

I have stopped just short of introducing connections.)

There are many other smaller changes that are too numerous to list,

but perhaps I should mention new sections on map-colouring (as an appli-

cation of Gauss-Bonnet), and a self-contained treatment of spherical geome-

try. Apart from its intrinsic interest, spherical geometry provides the simplest

‘non-Euclidean’ geometry and it is in many respects analogous to its hyperbolic

cousin. I have also corrected a number of errors in the first edition that were

spotted either by me or by correspondents (mostly the latter).

For teachers thinking about using this book, I would suggest that there

are now three routes through it that can be travelled in a single semester,

terminating with one of chapters 11, 12 or 13, and taking in along the way the

necessary basic material from chapters 1–10. For example, the new section on

spherical geometry might be covered only if the final destination is hyperbolic

geometry.

As in the first edition, solutions to all the exercises are provided at the

end of the book. This feature was almost universally approved of by student

commentators, and almost as universally disapproved of by teachers! Being

one myself, I do understand the teachers’ point of view, and to address it
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I have devised a large number of new exercises that will be accessible online

to all users of the book, together with a solutions manual for teachers, at

www.springer.com.

I would like to thank all those who sent comments on the first edition, from

beginning students through to experts - you know who you are! Even if I did not

act on all your suggestions, I took them all seriously, and I hope that readers

of this second edition will agree with me that the changes that resulted make

the book more useful and more enjoyable (and not just longer).
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1
Curves in the plane and in space

In this chapter, we discuss two mathematical formulations of the intuitive

notion of a curve. The precise relation between them turns out to be quite

subtle, so we begin by giving some examples of curves of each type and prac-

tical ways of passing between them.

1.1 What is a curve?

If asked to give an example of a curve, you might give a straight line, say

y − 2x = 1 (even though this is not ‘curved’ !), or a circle, say x2 + y2 = 1, or

perhaps a parabola, say y − x2 = 0.

y−2x= 1 y−x2= 0 x2+y2= 1

Andrew Pressley, Elementary Differential Geometry: Second Edition, 1
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-891-9 1,
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2 1. Curves in the plane and in space

All of these curves are described by means of their Cartesian equation

f(x, y) = c,

where f is a function of x and y and c is a constant. From this point of view,

a curve is a set of points, namely

C= {(x, y) ∈R
2 | f(x, y) = c}. (1.1)

These examples are all curves in the plane R2, but we can also consider curves

in R3 – for example, the x-axis in R3 is the straight line given by

y = 0, z = 0,

and more generally a curve in R3 might be defined by a pair of equations

f1(x, y, z) = c1, f2(x, y, z) = c2.

Curves of this kind are called level curves, the idea being that the curve in

Eq. 1.1, for example, is the set of points (x, y) in the plane at which the quantity

f(x, y) reaches the ‘level’ c.

But there is another way to think about curves which turns out to be more

useful in many situations. For this, a curve is viewed as the path traced out by

a moving point. Thus, if γ(t) is the position of the point at time t, the curve

is described by a function γ of a scalar parameter t with vector values (in R2

for a plane curve, in R3 for a curve in space). We use this idea to give our

first formal definition of a curve in Rn (we shall be interested only in the cases

n = 2 or 3, but it is convenient to treat both cases simultaneously).

Definition 1.1.1

A parametrized curve in Rn is a map γ : (α, β) → Rn, for some α, β with

−∞ ≤ α < β ≤ ∞.

The symbol (α, β) denotes the open interval

(α, β) = {t ∈ R | α < t < β}.
A parametrized curve, whose image is contained in a level curve C, is called

a parametrization of (part of) C. The following examples illustrate how to pass

from level curves to parametrized curves and back again in practice.

Example 1.1.2

Let us find a parametrization γ(t) of the parabola y = x2. If γ(t) =

(γ1(t), γ2(t)), the components γ1 and γ2 of γ must satisfy

γ2(t) = γ1(t)
2 (1.2)



1.1 What is a curve? 3

for all values of t in the interval (α, β) where γ is defined (yet to be decided),

and ideally every point on the parabola should be equal to (γ1(t), γ2(t)) for

some value of t ∈ (α, β). Of course, there is an obvious solution to Eq. 1.2: take

γ1(t) = t, γ2(t) = t2. To get every point on the parabola we must allow t to

take every real number value (since the x-coordinate of γ(t) is just t, and the

x-coordinate of a point on the parabola can be any real number), so we must

take (α, β) to be (−∞,∞). Thus, the desired parametrization is

γ : (−∞,∞) → R
2, γ(t) = (t, t2).

But this is not the only parametrization of the parabola. Another choice is

γ(t) = (t3, t6) (with (α, β) = (−∞,∞)). Yet another is (2t, 4t2), and of course

there are (infinitely many) others. So the parametrization of a given level curve

is not unique.

Example 1.1.3

Now we try the circle x2+y2 = 1. It is tempting to take x = t as in the previous

example, so that y =
√
1− t2 (we could have taken y = −

√
1− t2). So we get

the parametrization

γ(t) = (t,
√

1− t2).

But this is only a parametrization of the upper half of the circle because√
1− t2 is always ≥ 0. Similarly, if we had taken y = −

√
1− t2, we would only

have covered the lower half of the circle.

If we want a parametrization of the whole circle, we must try again. We

need functions γ1(t) and γ2(t) such that

γ1(t)
2 + γ2(t)

2 = 1 (1.3)

for all t ∈ (α, β), and such that every point on the circle is equal to (γ1(t), γ2(t))

for some t ∈ (α, β). There is an obvious solution to Eq. 1.3: γ1(t) = cos t

and γ2(t) = sin t (since cos2 t + sin2 t = 1 for all values of t). We can take

(α, β) = (−∞,∞), although this is overkill: any open interval (α, β) whose

length is greater than 2π will suffice.

The next example shows how to pass from parametrized curves to level

curves.



4 1. Curves in the plane and in space

Example 1.1.4

Take the parametrized curve (called an astroid)

γ(t) = (cos3 t, sin3 t), t ∈ R.

Since cos2 t + sin2 t = 1 for all t, the coordinates x = cos3 t, y = sin3 t of the

point γ(t) satisfy

x2/3 + y2/3 = 1.

This level curve coincides with the image of the map γ. See Exercise 1.1.5 for

a picture of the astroid.

In this book, we shall be studying parametrized curves (and later, surfaces)

using methods of calculus. Such curves and surfaces will be described almost

exclusively in terms of smooth functions: a function f : (α, β) → R is said to be

smooth if the derivative dnf
dtn exists for all n ≥ 1 and all t ∈ (α, β). If f(t) and

g(t) are smooth functions, it follows from standard results of calculus that the

sum f(t)+g(t), product f(t)g(t), quotient f(t)/g(t), and composite f(g(t)) are

smooth functions, where they are defined.

To differentiate a vector-valued function such as γ(t) (as in Definition 1.1.1),

we differentiate componentwise: if

γ(t) = (γ1(t), γ2(t), . . . , γn(t)),

then

dγ

dt
=

(

dγ1
dt

,
dγ2
dt

, . . . ,
dγn
dt

)

,
d2γ

dt2
=

(

d2γ1
dt2

,
d2γ2
dt2

, . . . ,
d2γn
dt2

)

, etc.

To save space, we often denote dγ/dt by γ̇(t), d2γ/dt2 by γ̈(t), etc. We say

that γ is smooth if the derivatives dnγ/dtn exist for all n ≥ 1 and all t ∈ (α, β);

this is equivalent to requiring that each of the components γ1, γ2, . . . , γn of γ

is smooth.

From now on, all parametrized curves studied in this book

will be assumed to be smooth.

Definition 1.1.5

If γ is a parametrized curve, its first derivative γ̇(t) is called the tangent vector

of γ at the point γ(t).
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To see the reason for this terminology, note that the vector

γ(t+ δt)− γ(t)

δt

is parallel to the chord joining the points γ(t) and γ(t+δt) of the image C of γ:

γ(t)

γ(t + δt)

As δt tends to zero the length of the chord also tends to zero, but we expect

that the direction of the chord becomes parallel to that of the tangent to C at

γ(t). But the direction of the chord is the same as that of the vector

γ(t+ δt)− γ(t)

δt
,

which tends to dγ/dt as δt tends to zero. Of course, this only determines a well-

defined direction tangent to the curve if dγ/dt is non-zero. If that condition

holds, we define the tangent line to C at a point p of C to be the straight line

passing through p and parallel to the vector dγ/dt.

The following result is intuitively clear:

Proposition 1.1.6

If the tangent vector of a parametrized curve is constant, the image of the curve

is (part of) a straight line.

Proof

If γ̇(t) = a for all t, where a is a constant vector, we have, integrating compo-

nentwise,

γ(t) =

∫

dγ

dt
dt =

∫

a dt = t a+ b,



6 1. Curves in the plane and in space

where b is another constant vector. If a �= 0, this is the parametric equation of

the straight line parallel to a and passing through the point b:

γ(t)ta

b a

0

If a = 0, the image of γ is a single point (namely, b).

Before proceeding further with our study of curves, we should point out a

potential source of confusion in the discussion of parametrized curves. This is

regarding the question what is a ‘point’ of such a curve? The difficulty can be

seen in the following example.

Example 1.1.7

The limaçon is the parametrized curve

γ(t) = ((1 + 2 cos t) cos t, (1 + 2 cos t) sin t), t ∈ R

(see the diagram below). Note that γ has a self-intersection at the origin in the

sense that γ(t) = 0 for t = 2π/3 and for t = 4π/3. The tangent vector is

γ̇(t) = (− sin t− 2 sin 2t, cos t+ 2 cos 2t).

In particular,

γ̇(2π/3) = (
√
3/2,−3/2), γ̇(4π/3) = (−

√
3/2,−3/2).

So what is the tangent vector of this curve at the origin? Although γ̇(t) is well-

defined for all values of t, it takes different values at t = 2π/3 and t = 4π/3,

both of which correspond to the point 0 on the curve.
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This example shows that we must be careful while talking about a ‘point’

of a parametrized curve γ: strictly speaking, this should be the same thing

as a value of the curve parameter t, and not the corresponding geometric

point γ(t) ∈ Rn. Thus, Definition 1.1.5 should more properly read “If γ is

a parametrized curve, its first derivative γ̇(t) is called the tangent vector of

γ at the parameter value t.” However, it seems to us that to insist on this

distinction takes away from the geometric viewpoint, and we shall sometimes

repeat the ‘error’ committed in the statement of Definition 1.1.5. This should

not lead to confusion if the preceding remarks are kept in mind.

EXERCISES

1.1.1 Is γ(t) = (t2, t4) a parametrization of the parabola y = x2?

1.1.2 Find parametrizations of the following level curves:

(i) y2 − x2 = 1;

(ii) x2

4 + y2

9 = 1.

1.1.3 Find the Cartesian equations of the following parametrized curves:

(i) γ(t) = (cos2 t, sin2 t);

(ii) γ(t) = (et, t2).

1.1.4 Calculate the tangent vectors of the curves in Exercise 1.1.3.

1.1.5 Sketch the astroid in Example 1.1.4. Calculate its tangent vector at

each point. At which points is the tangent vector zero?

1.1.6 Consider the ellipse
x2

p2
+

y2

q2
= 1,
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where p > q > 0 (see below). The eccentricity of the ellipse is ǫ =
√

1− q2

p2 and the points (±ǫp, 0) on the x-axis are called the foci

of the ellipse, which we denote by f1 and f2. Verify that γ(t) =

(p cos t, q sin t) is a parametrization of the ellipse. Prove that

(i) The sum of the distances from f1 and f2 to any point p on the

ellipse does not depend on p.

(ii) The product of the distances from f1 and f2 to the tangent line

at any point p of the ellipse does not depend on p.

(iii) If p is any point on the ellipse, the line joining f1 and p and

that joining f2 and p make equal angles with the tangent line

to the ellipse at p.

ff2

pp

ff1

1.1.7 A cycloid is the plane curve traced out by a point on the circum-

ference of a circle as it rolls without slipping along a straight line.

Show that, if the straight line is the x-axis and the circle has radius

a > 0, the cycloid can be parametrized as

γ(t) = a(t− sin t, 1− cos t).

1.1.8 Show that γ(t) = (cos2 t− 1
2 , sin t cos t, sin t) is a parametrization of

the curve of intersection of the circular cylinder of radius 1
2 and axis

the z-axis with the sphere of radius 1 and centre (− 1
2 , 0, 0). This is

called Viviani’s Curve – see above.
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1.1.9 The normal line to a curve at a point p is the straight line passing

through p perpendicular to the tangent line at p. Find the tangent

and normal lines to the curve γ(t) = (2 cos t− cos 2t, 2 sin t− sin 2t)

at the point corresponding to t = π/4.

1.2 Arc-length

We recall that, if v = (v1, . . . , vn) is a vector in Rn, its length is

‖ v ‖=
√

v21 + · · ·+ v2n.

If u is another vector in Rn, ‖ u−v ‖ is the length of the straight line segment

joining the points u and v in Rn.

To find a formula for the length of a parametrized curve γ, note that, if δt

is very small, the part of the image C of γ between γ(t) and γ(t+ δt) is nearly

a straight line, so its length is approximately

‖ γ(t+ δt)− γ(t) ‖ .

Again, since δt is small, (γ(t + δt) − γ(t))/δt is nearly equal to γ̇(t), so the

length is approximately

‖ γ̇(t) ‖ δt. (1.4)

If we want to calculate the length of a (not necessarily small) part of C, we
can divide it into segments, each of which corresponds to a small increment δt

in t, calculate the length of each segment using (1.4), and add up the results.

Letting δt tend to zero should then give the exact length.
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This motivates the following definition:

Definition 1.2.1

The arc-length of a curve γ starting at the point γ(t0) is the function s(t)

given by

s(t) =

∫ t

t0

‖ γ̇(u) ‖ du.

Thus, s(t0) = 0 and s(t) is positive or negative according to whether t

is larger or smaller than t0. If we choose a different starting point γ(t̃0), the

resulting arc-length s̃ differs from s by the constant
∫ t̃0
t0

‖ γ̇(u) ‖ du because

∫ t

t0

‖ γ̇(u) ‖ du =

∫ t

t̃0

‖ γ̇(u) ‖ du+

∫ t̃0

t0

‖ γ̇(u) ‖ du.

Example 1.2.2

For a logarithmic spiral

γ(t) = (ekt cos t, ekt sin t),

where k is a non-zero constant, we have

γ̇ = (ekt(k cos t− sin t), ekt(k sin t+ cos t)),

∴ ‖ γ̇ ‖2= e2kt(k cos t− sin t)2 + e2kt(k sin t+ cos t)2 = (k2 + 1)e2kt.

Hence, the arc-length of γ starting at γ(0) = (1, 0) (for example) is

s =

∫ t

0

√

k2 + 1eku du =

√
k2 + 1

k
(ekt − 1).
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The arc-length is a differentiable function. Indeed, if s is the arc-length of

a curve γ starting at γ(t0), we have

ds

dt
=

d

dt

∫ t

t0

‖ γ̇(u) ‖ du = ‖ γ̇(t) ‖ . (1.5)

Thinking of γ(t) as the position of a moving point at time t, ds/dt is the speed

of the point (rate of change of distance along the curve). This suggests the

following definition.

Definition 1.2.3

If γ : (α, β) → Rn is a parametrized curve, its speed at the point γ(t) is ‖ γ̇(t) ‖,
and γ is said to be a unit-speed curve if γ̇(t) is a unit vector for all t ∈ (α, β).

We shall see many examples of formulas and results relating to curves that

take on a much simpler form when the curve is unit-speed. The reason for this

simplification is given in the next proposition. Although this admittedly looks

uninteresting at first sight, it will be extremely useful for what follows.

We recall that the dot product (or scalar product) of vectors a = (a1, . . . , an)

and b = (b1, . . . , bn) in Rn is

a · b =

n
∑

i=1

aibi.

If a and b are smooth functions of a parameter t, we shall make use of the

‘product formula’
d

dt
(a · b) = da

dt
· b+ a · db

dt
.

This follows easily from the definition of the dot product and the usual product

formula for scalar functions,

d

dt
(aibi) =

dai
dt

bi + ai
dbi
dt

.

Proposition 1.2.4

Let n(t) be a unit vector that is a smooth function of a parameter t. Then, the

dot product
ṅ(t) · n(t) = 0

for all t, i.e., ṅ(t) is zero or perpendicular to n(t) for all t.

In particular, if γ is a unit-speed curve, then γ̈ is zero or perpendicular

to γ̇.
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Proof

Using the product formula to differentiate both sides of the equation n · n = 1

with respect to t gives

ṅ · n+ n · ṅ = 0,

so 2ṅ · n = 0. The last part follows by taking n = γ̇.

EXERCISES

1.2.1 Calculate the arc-length of the catenary γ(t) = (t, cosh t) starting at

the point (0, 1). This curve has the shape of a heavy chain suspended

at its ends – see Exercise 2.2.4.

1.2.2 Show that the following curves are unit-speed:

(i) γ(t) =
(

1
3 (1 + t)3/ 2, 1

3 (1 − t)3/ 2, t√
2

)

.

(ii) γ(t) =
(

4
5 cos t, 1− sin t,− 3

5 cos t
)

.

1.2.3 A plane curve is given by

γ(θ) = (r cos θ, r sin θ),

where r is a smooth function of θ (so that (r, θ) are the polar coor-

dinates of γ(θ)). Under what conditions is γ regular? Find all func-

tions r(θ) for which γ is unit-speed. Show that, if γ is unit-speed,

the image of γ is a circle; what is its radius?

1.2.4 This exercise shows that a straight line is the shortest curve joining

two given points. Let p and q be the two points, and let γ be a curve

passing through both, say γ(a) = p, γ(b) = q, where a < b. Show

that, if u is any unit vector,

γ̇ · u ≤‖ γ̇ ‖

and deduce that

(q− p) · u ≤
∫ b

a

‖ γ̇ ‖ dt.

By taking u = (q− p)/ ‖ q− p ‖, show that the length of the part

of γ between p and q is at least the straight line distance ‖ q−p ‖.
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1.3 Reparametrization

We saw in Examples 1.1.2 and 1.1.3 that a given level curve can have many

parametrizations, and it is important to understand the relation between them.

Definition 1.3.1

A parametrized curve γ̃ : (α̃, β̃) → Rn is a reparametrization of a parametrized

curve γ : (α, β) → Rn if there is a smooth bijective map φ : (α̃, β̃) → (α, β)

(the reparametrization map) such that the inverse map φ−1 : (α, β) → (α̃, β̃) is

also smooth and
γ̃(t̃) = γ(φ(t̃)) for all t̃ ∈ (α̃, β̃). (1.6)

Note that, since φ has a smooth inverse, γ is a reparametrization of γ̃:

γ̃(φ−1(t)) = γ(φ(φ−1(t))) = γ(t) for all t ∈ (α, β).

Two curves that are reparametrizations of each other have the same image,

so they should have the same geometric properties.

Example 1.3.2

In Example 1.1.3, we found that the circle x2 + y2 = 1 has a parametrization

γ(t) = (cos t, sin t). Another parametrization is

γ̃(t) = (sin t, cos t)

(since sin2 t + cos2 t = 1). To see that γ̃ is a reparametrization of γ, we have

to find a reparametrization map φ such that

(cosφ(t), sinφ(t)) = (sin t, cos t).

One solution is φ(t) = π/2− t.

As we remarked in Section 1.2, the analysis of a curve is simplified when

it is known to be unit-speed. It is therefore important to know exactly which

curves have unit-speed reparametrizations.

Definition 1.3.3

A point γ(t) of a parametrized curve γ is called a regular point if γ̇(t) �= 0;

otherwise γ(t) is a singular point of γ. A curve is regular if all of its points are

regular.
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Before we show the relation between regularity and unit-speed reparametri-

zation, we note two simple properties of regular curves. Although these results

are not particularly appealing, they are very important for what is to follow.

Proposition 1.3.4

Any reparametrization of a regular curve is regular.

Proof

Suppose that γ and γ̃ are related as in Definition 1.3.1, let t = φ(t̃) and ψ = φ−1

so that t̃ = ψ(t). Differentiating both sides of the equation φ(ψ(t)) = t with

respect to t and using the chain rule gives

dφ

dt̃

dψ

dt
= 1.

This shows that dφ/dt̃ is never zero. Since γ̃(t̃) = γ(φ(t̃)), another application

of the chain rule gives
dγ̃

dt̃
=

dγ

dt

dφ

dt̃
,

which shows that dγ̃/dt̃ is never zero, if dγ/dt is never zero.

Proposition 1.3.5

If γ(t) is a regular curve, its arc-length s (see Definition 1.2.1), starting at any

point of γ, is a smooth function of t.

Proof

We have already seen that (whether or not γ is regular) s is a differentiable

function of t and
ds

dt
= ‖ γ̇(t) ‖ .

To simplify the notation, assume from now onwards that γ is a plane

curve, say

γ(t) = (u(t), v(t)),

where u and v are smooth functions of t, so that

ds

dt
=

√

u̇2 + v̇2.
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The crucial point is that the function f(x) =
√
x is a smooth function on

the open interval (0,∞). Indeed, it is easy to prove by induction on n ≥ 1 that

dnf

dxn
= (−1)n−1 1.3.5. . . . .(2n− 1)

2n
x−(2n+1)/2.

Since u and v are smooth functions of t, so are u̇ and v̇ and hence is u̇2 + v̇2.

Since γ is regular, u̇2 + v̇2 > 0 for all values of t, so the composite function

ds

dt
= f(u̇2 + v̇2)

is a smooth function of t, and hence s itself is smooth.

The main result we want is the following.

Proposition 1.3.6

A parametrized curve has a unit-speed reparametrization if and only if it is

regular.

Proof

Suppose first that a parametrized curve γ : (α, β) → Rn has a unit-speed

reparametrization γ̃, with reparametrization map φ. Letting t = φ(t̃), we have

γ̃(t̃) = γ(t) and so

dγ̃

dt̃
=

dγ

dt

dt

dt̃
,

∴

∣

∣

∣

∣

∣

∣

∣

∣

dγ̃

dt̃

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

dγ

dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dt

dt̃

∣

∣

∣

∣

.

Since γ̃ is unit-speed, ‖ dγ̃/dt̃ ‖= 1, so dγ/dt cannot be zero.

Conversely, suppose that the tangent vector dγ/dt is never zero. By Eq. 1.5,

ds/dt > 0 for all t, where s is the arc-length of γ starting at any point of the

curve, and by Proposition 1.3.5 s is a smooth function of t. It follows from

the inverse function theorem that s : (α, β) → R is injective, that its image

is an open interval (α̃, β̃), and that the inverse map s−1 : (α̃, β̃) → (α, β) is

smooth. (Readers unfamiliar with the inverse function theorem should accept

these statements for now; the theorem will be discussed informally in Section 1.5

and formally in Section 5.6.) We take φ = s−1 and let γ̃ be the corresponding

reparametrization of γ, so that γ̃(s) = γ(t) (see Eq. 1.6). Then,

dγ̃

ds

ds

dt
=

dγ

dt
,
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∴

∣

∣

∣

∣

∣

∣

∣

∣

dγ̃

ds

∣

∣

∣

∣

∣

∣

∣

∣

ds

dt
=

∣

∣

∣

∣

∣

∣

∣

∣

dγ

dt

∣

∣

∣

∣

∣

∣

∣

∣

=
ds

dt
(by Eq. 1.5),

∴

∣

∣

∣

∣

∣

∣

∣

∣

dγ̃

ds

∣

∣

∣

∣

∣

∣

∣

∣

= 1.

The proof of Proposition 1.3.6 shows that the arc-length is essentially the

only unit-speed parameter on a regular curve:

Corollary 1.3.7

Let γ be a regular curve and let γ̃ be a unit-speed reparametrization of γ:

γ̃(u(t)) = γ(t) for all t,

where u is a smooth function of t. Then, if s is the arc-length of γ (starting at

any point), we have

u = ±s+ c, (1.7)

where c is a constant. Conversely, if u is given by Eq. 1.7 for some value of c

and with either sign, then γ̃ is a unit-speed reparametrization of γ.

Proof

The calculation in the first part of the proof of Proposition 1.3.6 shows that u

gives a unit-speed reparametrization of γ if and only if

du

dt
= ±

∣

∣

∣

∣

∣

∣

∣

∣

dγ

dt

∣

∣

∣

∣

∣

∣

∣

∣

= ±ds

dt
(by Eq. 1.5),

which is equivalent to u = ±s+ c for some constant c.

Although every regular curve has a unit-speed reparametrization, this may

be very complicated, or even impossible, to write down ‘explicitly’, as the fol-

lowing examples show.

Example 1.3.8

For the logarithmic spiral γ(t) = (ekt cos t, ekt sin t), we found in Example 1.2.2

that ‖ γ̇ ‖2= (k2 + 1)e2kt. This is never zero, so γ is regular. The arc-

length of γ starting at (1, 0) was found to be s =
√
k2 + 1(ekt − 1)/k. Hence,

t = 1
k ln

(

ks√
k2+1

+ 1
)

, so a unit-speed reparametrization of γ is given by the

rather unwieldy formula
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γ̃(s) =

((

ks√
k2 + 1

+ 1

)

cos

(

1

k
ln

(

ks√
k2 + 1

+ 1

))

,

(

ks√
k2 + 1

+ 1

)

sin

(

1

k
ln

(

ks√
k2 + 1

+ 1

)))

.

Example 1.3.9

The twisted cubic is the space curve given by

γ(t) = (t, t2, t3), t ∈ R.

We have γ̇(t) = (1, 2t, 3t2) and so

‖ γ̇(t) ‖=
√

1 + 4t2 + 9t4.

This is never zero, so γ is regular. The arc-length starting at γ(0) = 0 is

s =

∫ t

0

√

1 + 4u2 + 9u4 du.

This integral cannot be evaluated in terms of familiar functions like logarithms

and exponentials, and trigonometric functions. (It is an example of an elliptic

integral.)

Our final example shows that a given level curve can have both regular and

non-regular parametrizations.

Example 1.3.10

For the parametrization γ(t) = (t, t2) of the parabola y = x2, γ̇(t) = (1, 2t) is

obviously never zero, so γ is regular. But γ̃(t) = (t3, t6) is also a parametrization

of the same parabola. This time, ˙̃γ = (3t2, 6t5), and this is zero when t = 0, so

γ̃ is not regular.
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EXERCISES

1.3.1 Which of the following curves are regular?

(i) γ(t) = (cos2 t, sin2 t) for t ∈ R.

(ii) The same curve as in (i), but with 0 < t < π/2.

(iii) γ(t) = (t, cosh t) for t ∈ R.

Find unit-speed reparametrizations of the regular curve(s).

1.3.2 The cissoid of Diocles (see below) is the curve whose equation in

terms of polar coordinates (r, θ) is

r = sin θ tan θ, −π/2 < θ < π/2.

Write down a parametrization of the cissoid using θ as a parameter

and show that

γ(t) =

(

t2,
t3√
1− t2

)

, −1 < t < 1

is a reparametrization of it.

1.3.3 The simplest type of singular point of a curve γ is an ordinary cusp:

a point p of γ, corresponding to a parameter value t0, say, is an

ordinary cusp if γ̇(t0) = 0 and the vectors γ̈(t0) and
...
γ (t0) are

linearly independent (in particular, these vectors must both be non-

zero). Show that:

(i) The curve γ(t) = (tm, tn), where m and n are positive integers,

has an ordinary cusp at the origin if and only if (m,n) = (2, 3)

or (3, 2).
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(ii) The cissoid in Exercise 1.3.2 has an ordinary cusp at the origin.

(iii) If γ has an ordinary cusp at a point p, so does any

reparametrization of γ.

1.3.4 Show that:

(i) If γ̃ is a reparametrization of a curve γ, then γ is a

reparametrization of γ̃.

(ii) If γ̃ is a reparametrization of γ, and γ̂ is a reparametrization of

γ̃, then γ̂ is a reparametrization of γ.

1.4 Closed curves

It is obvious that some curves ‘close up’, like a circle or an ellipse, while some do

not, like a straight line or a parabola. If a point moves, say at constant speed,

around a curve that closes up, it will return to its starting point after some time

interval, and will then trace out the same curve all over again. On the other

hand, if a point moves at constant speed along a straight line or a parabola, it

will never return to its starting point. But there are some intermediate cases like

γ(t) = (t2 − 1, t3 − t);

a point moving at constant speed along this curve may return to its starting

point if the starting point is the origin, but will not do so otherwise. So a careful

definition of what it means for a curve to ‘close up’ is needed.
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Definition 1.4.1

Let γ : R → Rn be a smooth curve and let T ∈ R. We say that γ is

T -periodic if
γ(t+ T ) = γ(t) for all t ∈ R.

If γ is not constant and is T -periodic for some T �= 0, then γ is said to be

closed.

Thus, if γ is T -periodic, a point moving around γ returns to its starting

point after time T , whatever the starting point is. Of course, every curve is

0-periodic.

Remark

If γ is T -periodic, it is clear that γ is determined by its restriction to any

interval of length |T |. Conversely, closed curves are often given to us as curves

defined on a closed interval, say γ : [a, b] → Rn. If γ and all its derivatives take

the same value at a and b,1 there is a unique way to extend γ to a (b − a)-

periodic (smooth) curve γ : R → Rn. Thus, the discussion below can be applied

to curves defined on closed intervals.

It is clear that if a curve γ is T -periodic then it is (−T )-periodic because

γ(t− T ) = γ((t− T ) + T ) = γ(t).

It follows that if γ is T -periodic for some T �= 0, then it is T -periodic for some

T > 0.

Definition 1.4.2

The period of a closed curve γ is the smallest positive number T such that γ

is T -periodic.

It is actually not quite obvious that this number T exists (remember that

not every set of positive real numbers has a smallest element). A proof that it

does exist can be found in the exercises.

Example 1.4.3

The ellipse γ(t) = (p cos t, q sin t) (Exercise 1.1.6) is a closed curve with period

2π because both of its components are (by well-known properties of trigono-

metric functions).

1 The derivatives at the endpoints a and b must be defined in the one-sided sense.
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If γ is a regular closed curve, a unit-speed reparametrization of γ is always

closed. To see this, note that since every point in the image of a closed curve

γ of period T is traced out as the parameter t of γ varies through any interval

of length T , for example, 0 ≤ t ≤ T , it is reasonable to define the length of γ

to be

ℓ(γ) =

∫ T

0

‖ γ̇(t) ‖ dt.

By the proof of Proposition 1.3.6, using the arc-length

s =

∫ t

0

‖ γ̇(u) ‖ du

of γ as the parameter gives a unit-speed reparametrization γ̃ of γ (so that

γ̃(s) = γ(t)). Note that

s(t+ T )=

∫ t+T

0

‖ γ̇(u) ‖du =

∫ T

0

‖ γ̇(u) ‖du+
∫ t+T

T

‖ γ̇(u) ‖du = ℓ(γ) + s(t),

since, putting v = u−T and using γ(u−T ) = γ(u) (and hence by differentiation

γ̇(u− T ) = γ̇(u)), we get

∫ t+T

T

‖ γ̇(u) ‖ du =

∫ t

0

‖ γ̇(v) ‖ dv = s(t).

Hence,

γ̃(s(t)) = γ̃(s(t′)) ⇐⇒ γ(t) = γ(t′) ⇐⇒ t′ − t = kT ⇐⇒ s(t′)− s(t) = kℓ(γ),

where k is an integer. This shows that γ̃ is a closed curve with period ℓ(γ).

Note that, since γ̃ is unit-speed, this is also the length of γ̃. In short, we can

always assume that a closed curve is unit-speed and that its period is equal to

its length.

Returning to the curve illustrated at the beginning of this section, it is

clearly not closed; nevertheless, if a point starts at the origin and moves at

constant speed around the loop in the region x < 0 it will return to its starting

point. This suggests the following definition.

Definition 1.4.4

A curve γ is said to have a self-intersection at a point p of the curve if there

exist parameter values a �= b such that

(i) γ(a) = γ(b) = p, and

(ii) if γ is closed with period T , then a− b is not an integer multiple of T .
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Example 1.4.5

The limaçon in Example 1.1.7 is a closed curve with period 2π. It is clear from

the picture that it has exactly one self-intersection, at the origin. (This can also

be verified analytically – cf. Exercise 1.4.1 and its solution.)

EXERCISES

1.4.1 Show that the Cayley sextic

γ(t) = (cos3 t cos 3t, cos3 t sin 3t), t ∈ R,

is a closed curve which has exactly one self-intersection. What is

its period? (The name of this curve derives from the fact that its

Cartesian equation involves a polynomial of degree 6.)

1.4.2 Give an example to show that a reparametrization of a closed curve

need not be closed.

1.4.3 Show that if a curve γ is T1-periodic and T2-periodic, then it is

(k1T1 + k2T2)-periodic for any integers k1, k2.

1.4.4 Let γ : R → Rn be a curve and suppose that T0 is the smallest pos-

itive number such that γ is T0-periodic. Prove that γ is T -periodic

if and only if T = kT0 for some integer k.

1.4.5 Suppose that a non-constant function γ : R → R is T -periodic for

some T �= 0. This exercise shows that there is a smallest positive

T0 such that γ is T0-periodic. The proof uses a little real analysis.

Suppose for a contradiction that there is no such T0.

(i) Show that there is a sequence T1, T2, T3, . . . such that T1 > T2 >

T3 > · · · > 0 and that γ is Tr-periodic for all r ≥ 1.

(ii) Show that the sequence {Tr} in (i) can be chosen so that Tr → 0

as r → ∞.

(iii) Show that the existence of a sequence {Tr} as in (i) such that

Tr → 0 as r → ∞ implies that γ is constant.

1.4.6 Let γ : R → Rn be a non-constant curve that is T -periodic for some

T > 0. Show that γ is closed.
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1.5 Level curves versus parametrized curves

We shall now try to clarify the relation between the two types of curves we

have considered in previous sections.

Level curves in the generality we have defined them are not always the

kind of objects we would want to call curves. For example, the level ‘curve’

x2 + y2 = 0 is a single point. The correct conditions to impose on a function

f(x, y) in order that f(x, y) = c, where c is a constant, will be an acceptable

level curve in the plane are contained in the following theorem, which shows

that such level curves can be parametrized. Note that we might as well assume

that c = 0 (since we can replace f by f − c).

Theorem 1.5.1

Let f(x, y) be a smooth function of two variables (which means that all the par-

tial derivatives of f , of all orders, exist and are continuous functions). Assume

that, at every point of the level curve

C = {(x, y) ∈ R
2 | f(x, y) = 0},

∂f/∂x and ∂f/∂y are not both zero. If p is a point of C, with coordinates

(x0, y0), say, there is a regular parametrized curve γ(t), defined on an open

interval containing 0, such that γ passes through p when t = 0 and γ(t) is

contained in C for all t.

The proof of this theorem makes use of the inverse function theorem (one

version of which has already been used in the proof of Proposition 1.3.6). For the

moment, we shall only try to convince the reader of the truth of this theorem.

The proof will be given later (Exercise 5.6.2) after the inverse function theorem

has been formally introduced and used in our discussion of surfaces.

To understand the significance of the conditions on f in Theorem 1.5.1,

suppose that (x0 +∆x, y0 +∆y) is a point of C near p, so that

f(x0 +∆x, y0 +∆y)= 0.

By the two-variable form of Taylor’s theorem,

f(x0 +∆x, y0 +∆y) = f(x0, y0) + ∆x
∂f

∂x
+∆y

∂f

∂y
,

neglecting products of the small quantities ∆x and ∆y (the partial derivatives

are evaluated at (x0, y0)). Hence,

∆x
∂f

∂x
+∆y

∂f

∂y
= 0. (1.8)
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Since ∆x and ∆y are small, the vector (∆x,∆y) is nearly tangent to C at p,

so Eq. 1.8 says that the vector n =
(

∂f
∂x ,

∂f
∂y

)

is perpendicular to C at p.

(∆x, ∆y)

P

n

C

x

y

The hypothesis in Theorem 1.5.1 tells us that the vector n is non-zero at

every point of C. Suppose, for example, that ∂f
∂y �= 0 at p. Then, n is not parallel

to the x-axis at p, so the tangent to C at p is not parallel to the y-axis.

x

P

x0

y0

y

C

This implies that vertical lines x = constant near x = x0 all intersect C in a

unique point (x, y) near p. In other words, the equation

f(x, y) = 0 (1.9)
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has a unique solution y near y0 for every x near x0. Note that this may fail to

be the case if the tangent to C at p is parallel to the y-axis (i.e., if ∂f/∂y = 0):

y

P

xx0

C

In this example, lines x = constant just to the left of x = x0 do not meet C
near p, while those just to the right of x = x0 meet C in more than one point

near p.

The italicized statement about f in the last paragraph means that there is

a function g(x), defined for x near x0, such that y = g(x) is the unique solution

of Eq. 1.9 near y0. We can now define a parametrization γ of the part of C near

p by

γ(t) = (t, g(t)).

If we accept that g is smooth (which follows from the inverse function theorem),

then γ is certainly regular since γ̇ = (1, ġ) is obviously never zero. This ‘proves’

Theorem 1.5.1.

x2 + y2 = 1 x2 − y2 = 1

It is actually possible to prove slightly more than we have stated in

Theorem 1.5.1. Suppose that f(x, y) satisfies the conditions in the theorem,

and assume in addition that the level curve C given by f(x, y) = 0 is connected.
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For readers unfamiliar with point set topology, this means roughly that C is

in ‘one piece’. For example, the circle x2 + y2 = 1 is connected, but the hy-

perbola x2 − y2 = 1 is not (see above). With these assumptions on f , there

is a regular parametrized curve γ whose image is the whole of C. Moreover,

if C is not closed γ can be taken to be injective; if C is closed, then γ maps

some closed interval [α, β] onto C, γ(α) = γ(β) and γ is injective on the open

interval (α, β).

A similar argument can be used to pass from parametrized curves to level

curves:

Theorem 1.5.2

Let γ be a regular parametrized plane curve, and let γ(t0) = (x0, y0) be a point

in the image of γ. Then, there is a smooth real-valued function f(x, y), defined

for x and y in open intervals containing x0 and y0, respectively, and satisfying

the conditions in Theorem 1.5.1, such that γ(t) is contained in the level curve

f(x, y) = 0 for all values of t in some open interval containing t0.

The proof of Theorem 1.5.2 is similar to that of Theorem 1.5.1. Let

γ(t) = (u(t), v(t)),

where u and v are smooth functions. Since γ is regular, at least one of u̇(t0)

and v̇(t0) is non-zero, say u̇(t0). This means that the graph of u as a function

of t is not parallel to the t-axis at t0:

u

u0

t0
t

As in the proof of Theorem 1.5.1, this implies that any line parallel to the t-axis

close to u = x0 intersects the graph of u at a unique point u(t) with t close

to t0. This gives a function h(x), defined for x in an open interval containing
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x0, such that t = h(x) is the unique solution of u(t) = x if x is near x0 and t is

near t0. The inverse function theorem tells us that h is smooth. The function

f(x, y) = y − v(h(x))

has the properties we want.

It is not in general possible to find a single function f(x, y) satisfying the

conditions in Theorem 1.5.1 such that the image of γ is contained in the

level curve f(x, y) = 0, for γ may have self-intersections like the limaçon in

Example 1.1.7. It follows from the inverse function theorem that no single func-

tion f satisfying the conditions in Theorem 1.5.1 can be found that describes

a curve near such a self-intersection.

EXERCISES

1.5.1 Show that the curve C with Cartesian equation

y2 = x(1− x2)

is not connected. For what range of values of t is

γ(t) = (t,
√

t− t3)

a parametrization of C? What is the image of this parametrization?

1.5.2 State an analogue of Theorem 1.5.1 for level curves in R3 given by

f(x, y, z) = g(x, y, z) = 0.

1.5.3 State and prove an analogue of Theorem 1.5.2 for curves in R3

(or even Rn). (This is easy.)

In the remainder of this book, we shall speak simply of ‘curves’,

unless there is serious danger of confusion as to which type

(level or parametrized) is intended.



2
How much does a curve curve?

In this chapter, we associate two scalar functions, its curvature and torsion, to

any curve in R3. The curvature measures the extent to which a curve is not

contained in a straight line (so that straight lines have zero curvature), and

the torsion measures the extent to which a curve is not contained in a plane

(so that plane curves have zero torsion). It turns out that the curvature and

torsion together determine the shape of a curve.

2.1 Curvature

We are going to try to find a measure of how ‘curved’ a curve is, and to simplify

matters we shall work with plane curves initially. Since a straight line should

certainly have zero curvature, a measure of the curvature of a plane curve at a

point p of the curve should be its deviation from the tangent line at p.

Suppose then that γ is a unit-speed curve in R2. As the parameter t of γ

changes to t + ∆t, the curve moves away from its tangent line at γ(t) by a

distance (γ(t + ∆t) − γ(t)) · n, where n is a unit vector perpendicular to the

tangent vector γ̇(t) of γ at the point γ(t).

A n d r e w P r e s s l e y , Elementary Differential Geometry: Second Edition, 29
S p r i n g e r U n d e r g r a d u a t e M a t h e m a t i c s S e r i e s , D O I 10.1007/978-1-84882-891-9 2,
c© Springer-Verlag London Limited 2010
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°(t)

°(t + Δt)

n

By Taylor’s theorem,

γ(t+∆t) = γ(t) + γ̇(t)∆t +
1

2
γ̈(t)(∆t)2 + remainder, (2.1)

where (remainder)/(∆t)2 tends to zero as ∆t tends to zero. Since γ̇ ·n = 0, the

deviation of γ from its tangent line at γ(t) is

1

2
γ̈(t) · n(∆t)2 + remainder.

Since γ is unit-speed, γ̈ is perpendicular to γ̇ and therefore parallel to n. Hence,

neglecting the remainder terms, the magnitude of the deviation of γ from its

tangent line is
1

2
‖ γ̈(t) ‖ (∆t)2.

This suggests the following definition:

Definition 2.1.1

If γ is a unit-speed curve with parameter t, its curvature κ(t) at the point γ(t)

is defined to be ‖ γ̈(t) ‖.

Note that we make this definition for unit-speed curves in Rn for all n ≥ 2.

Note also that this definition is consistent with Proposition 1.1.6, which tells

us that if γ̈ = 0 everywhere then γ is part of a straight line, and so should

certainly have zero curvature.
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Let us see if Definition 2.1.1 is consistent with what we expect for the

curvature of circles. Consider the circle in R2 centred at (x0, y0) and of radius R.

This has a unit-speed parametrization

γ(t) =

(

x0 +R cos
t

R
, y0 +R sin

t

R

)

.

We have γ̇(t) =
(

− sin t
R , cos t

R

)

, and so

‖ γ̇(t) ‖=

√

(

− sin
t

R

)2

+

(

cos
t

R

)2

= 1,

confirming that γ is unit-speed, and hence γ̈(t) =
(

− 1
R cos t

R ,− 1
R sin t

R

)

, so

the curvature

‖ γ̈(t) ‖=

√

(

−
1

R
cos

t

R

)2

+

(

−
1

R
sin

t

R

)2

=
1

R

is the reciprocal of the radius of the circle. This is in accordance with our

expectation that small circles should have large curvature and large circles

small curvature.

So far we have only considered unit-speed curves. If γ is any regular curve,

then by Proposition 1.3.6, γ has a unit-speed parametrization γ̃, say, and we

can define the curvature of γ to be that of γ̃. For this to make sense, we need

to know that if γ̂ is another unit-speed parametrization of γ, the curvatures of

γ̃ and γ̂ are the same. To see this, note that γ̂ will be a reparametrization of

γ̃ (Exercise 1.3.4), so by Corollary1.3.7,

γ̃(t) = γ̂(u),

where u = ±t+ c and c is a constant. Then, by the chain rule, dγ̃
dt = ± dγ̂

du , so

d2γ̃

dt

2

= ±
d

du

(

±
dγ̂

du

)

=
d2γ̂

du2 ,

which shows that γ̃ and γ̂ do indeed have the same curvature.

Although every regular curve γ has a unit-speed reparametrization, it may

be complicated or impossible to write it down explicitly (see Examples 1.3.8

and 1.3.9), and so it is desirable to have a formula for the curvature of γ in

terms of γ itself rather than a reparametrization of it.

Proposition 2.1.2

Let γ(t) be a regular curve in R3. Then, its curvature is

κ =
‖ γ̈ × γ̇ ‖

‖ γ̇ ‖3
, (2.2)

where the × indicates the vector (or cross) product and the dot denotes d/dt.
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Of course, since a curve in R2 can be viewed as a curve in the xy-plane

(say) in R3, Eq. 2.2 can also be used to calculate the curvature of plane curves.

Proof

Let s be a unit-speed parameter for γ. Then, by the chain rule,

γ̇ =
dγ

dt
=

dγ

ds

ds

dt
,

so

κ =

∣

∣

∣

∣

∣

∣

∣

∣

d2γ

ds2

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

d

ds

(

dγ/dt

ds/dt

)∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d
dt

(

dγ/dt
ds/dt

)

ds/dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ds
dt

d2γ

dt2
− d2s

dt2
dγ
dt

(ds/dt)3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.3)

Now,
(

ds

dt

)2

= ‖ γ̇ ‖2 = γ̇ · γ̇,

and differentiating with respect to t gives

ds

dt

d2s

dt2
= γ̇ · γ̈.

Using this and Eq. 2.3, we get

κ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

ds
dt

)2
γ̈ − d2s

dt2
ds
dt γ̇

(ds/dt)4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
‖ (γ̇ · γ̇)γ̈ − (γ̇ · γ̈)γ̇ ‖

‖ γ̇ ‖4
.

Using the vector triple product identity

a× (b× c) = (a · c)b− (a · b)c

(where a,b,c ∈ R3), we get

γ̇ × (γ̈ × γ̇) = (γ̇ · γ̇)γ̈ − (γ̇ · γ̈)γ̇.

Further, γ̇ and γ̈ × γ̇ are perpendicular vectors, so

‖ γ̇ × (γ̈ × γ̇) ‖= ‖ γ̇ ‖‖ γ̈ × γ̇ ‖ .

Hence,

‖ (̇γ · γ̇)̈γ − (̇γ · γ̈)̇γ ‖

‖ γ̇ ‖4
=

‖ γ̇ × (̈γ × γ̇)‖

‖ γ̇ ‖4
=

‖ γ̇ ‖‖ γ̈ × γ̇ ‖

‖ γ̇ ‖4
=

‖ γ̈ × γ̇ ‖

‖ γ̇ ‖3
.
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Note that formula (2.2) makes sense provided that γ̇ �= 0. Thus, the

curvature is defined at all regular points of the curve.

Example 2.1.3

A circular helix with axis the z-axis is a curve of the form

γ(θ) = (a cos θ, a sin θ, bθ), θ ∈ R,

where a and b are constants.

If (x, y, z) is a point on the helix, so that

x = a cos θ, y = a sin θ, z = bθ,

for some value of θ, then x2+y2 = a2, showing that the helix lies on the cylinder

with axis the z-axis and radius |a|; the positive number |a| is called the radius

of the helix. As θ increases by 2π, the point (a cos θ, a sin θ, bθ) rotates once

round the z-axis and moves parallel to the z-axis by 2πb; the positive number

2π|b| is called the pitch of the helix.

Let us compute the curvature of the helix using the formula in Proposi-

tion 2.1.2. Denoting d/dθ by a dot, we have γ̇(θ) = (−a sin θ, a cos θ, b) so

‖ γ̇(θ) ‖=
√

a2 + b2.

This shows that γ̇(θ) is never zero, so γ is regular (unless a = b = 0, in

which case the image of the helix is a single point). Hence, the formula in
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Proposition 2.1.2 applies, and we have γ̈ = (−a cos θ,−a sin θ, 0) so γ̈ × γ̇ =

(−ab sin θ, ab cos θ,−a2) and hence

κ =
‖ (−ab sin θ, ab cos θ,−a2) ‖

‖ (−a sin θ, a cos θ, b) ‖3
=

(a2b2 + a4)1/2

(a2 + b2)3/2
=

|a|

a2 + b2
. (2.4)

Thus, the curvature of the helix is constant.

Let us examine some limiting cases to see if this result agrees with what

we already know. First, suppose that b = 0 (but a �= 0). Then, the helix is

simply a circle in the xy-plane of radius |a|, so by the calculation following

Definition 2.1.1 its curvature is 1/|a|. On the other hand, the formula (2.4)

gives the curvature as

|a|

a2 + 02
=

|a|

a2
=

|a|

|a|
2 =

1

|a|
.

Next, suppose that a = 0 (but b �= 0). Then, the image of the helix is just the

z-axis, a straight line, so the curvature is zero. And formula (2.4) gives zero

when a = 0 too.

EXERCISES

2.1.1 Compute the curvature of the following curves:

(i) γ(t) =
(

1
3 (1 + t)3/2 1

3 (1− t)3/2, t√
2

)

.

(ii) γ(t) =
(

4
5 cos t, 1− sin t,− 3

5 cos t
)

.

(iii) γ(t) = (t, cosh t).

(iv) γ(t) = (cos3 t, sin3 t).

For the astroid in (iv), show that the curvature tends to ∞ as we

approach one of the points (±1, 0), (0,±1). Compare with the sketch

found in Exercise 1.1.5.

2.1.2 Show that, if the curvature κ(t) of a regular curve γ(t) is > 0 every-

where, then κ(t) is a smooth function of t. Give an example to show

that this may not be the case without the assumption that κ > 0.

2.2 Plane curves

For plane curves, it is possible to refine the definition of curvature slightly and

give it an appealing geometric interpretation.
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Suppose that γ(s) is a unit-speed curve in R2. Denoting d/ds by a dot, let

t= γ̇

be the tangent vector of γ; note that t is a unit vector. There are two unit

vectors perpendicular to t; we make a choice by defining ns, the signed unit

normal of γ, to be the unit vector obtained by rotating t anticlockwise by π/2.

ns t

By Proposition 1.2.4, ṫ = γ̈ is perpendicular to t, and hence parallel to ns.

Thus, there is a scalar κs such that

γ̈ = κsns;

κs is called the signed curvature of γ (it can be positive, negative or zero). Note

that, since ‖ ns ‖= 1, we have

κ = ‖ γ̈ ‖= ‖ κsns ‖= |κs|, (2.5)

so the curvature of γ is the absolute value of its signed curvature. The following

diagrams show how the sign of the signed curvature is determined (in each case,

the arrow on the curve indicates the direction of increasing s); κs is negative

for the two middle diagrams and positive for the other two.

ks> 0

ns

ns

ns

ns

< 0 < 0 > 0

t

t

t

t

ks ks ks
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I f γ ( t) i s a r e g u l a r , b u t n o t n e c e s s a r i l y u n i t - s p e e d , c u r v e w e d e fi n e t h e u n i t

t a n g e n t v e c t o r t, s i g n e d u n i t n o r m a l ns a n d s i g n e d c u r v a t u r e κs o f γ t o b e

t h o s e o f i t s u n i t - s p e e d p a r a m e t r i z a t i o n γ̃ ( s) , w h e r e s i s t h e a r c - l e n g t h o f γ .

T h u s ,

t =
dγ/dt

ds/dt
=

dγ/dt

‖ dγ/dt ‖
,

ns i s o b t a i n e d b y r o t a t i n g t a n t i c l o c k w i s e b y π/2 , a n d

dt

dt
=

dt

ds

ds

dt
= κs

ds

dt
ns = κs

∣

∣

∣

∣

∣

∣

∣

∣

dγ

dt

∣

∣

∣

∣

∣

∣

∣

∣

ns.

T h e s i g n e d c u r v a t u r e h a s a s i m p l e g e o m e t r i c i n t e r p r e t a t i o n i n t e r m s o f t h e

r a t e a t w h i c h t h e t a n g e n t v e c t o r r o t a t e s . I f γ i s a u n i t - s p e e d c u r v e , t h e d i r e c t i o n

o f t h e t a n g e n t v e c t o r γ̇ ( s) i s m e a s u r e d b y t h e a n g l e ϕ( s) s u c h t h a t

γ̇ ( s) = ( c o s ϕ( s) , s i n ϕ( s) ) . ( 2 . 6 )

T h e a n g l e ϕ( s) i s n o t u n i q u e , h o w e v e r , a s w e c a n a d d t o a n y p a r t i c u l a r c h o i c e

a n y i n t e g e r m u l t i p l e o f 2 π . T h e f o l l o w i n g r e s u l t g u a r a n t e e s t h a t t h e r e i s a l w a y s

a smooth c h o i c e :

Proposition 2.2.1

L e t γ : ( α, β ) → R2 b e a u n i t - s p e e d c u r v e , l e t s0 ∈ ( α, β ) a n d l e t ϕ0 b e s u c h

t h a t

γ̇ ( s0 ) = ( c o s ϕ0, s i n ϕ0 ) .

T h e n t h e r e i s a u n i q u e s m o o t h f u n c t i o n ϕ : ( α, β ) → R s u c h t h a t ϕ( s0 ) = ϕ0

a n d t h a t E q . 2 . 6 h o l d s f o r a l l s ∈ ( α, β ) .

Proof

L e t

γ̇ ( s) = ( f ( s) , g ( s) ) ;

n o t e t h a t

f ( s) 2 + g ( s) 2 = 1 f o r a l l s ( 2 . 7 )

s i n c e γ i s u n i t - s p e e d . D e fi n e

ϕ( s) = ϕ0 +

∫ s

s0

( f ġ − gḟ ) dt.

O b v i o u s l y ϕ( s0 ) = ϕ0 . M o r e o v e r , s i n c e t h e f u n c t i o n s f a n d g a r e s m o o t h , s o i s

ϕ̇ = f ġ − gḟ , a n d h e n c e s o i s ϕ.
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Let

F = f cosϕ+ g sinϕ, G = f sinϕ− g cosϕ.

Then,

Ḟ = (ḟ + gϕ̇) cosϕ+ (ġ − fϕ̇) sinϕ.

But

ḟ + gϕ̇ = ḟ(1− g2) + fgġ = f(f ḟ + gġ) = 0,

where the second equality used Eq. 2.7 and the last equality used its conse-

quence

f ḟ + gġ = 0.

Similarly, ġ − fϕ̇ = 0. Hence, Ḟ = 0 and F is constant. A similar argument

shows that G is constant. But

F (s0) = f(s0) cosϕ0 + g(s0) sinϕ0 = cos2 ϕ0 + sin2 ϕ0 = 1,

and similarly G(s0) = 0. It follows that

f cosϕ+ g sinϕ = 1, f sinϕ− g cosϕ = 0

for all s. These equations imply that f = cosϕ, g = sinϕ, and hence that the

smooth function ϕ satisfies Eq. 2.6.

As to the uniqueness, if ψ is another smooth function such that ψ(s0) = ϕ0

and γ̇(s) = (cosψ(s), sinψ(s)) for s ∈ (α, β), there is an integer n(s) such that

ψ(s)− ϕ(s) = 2πn(s) for all s ∈ (α, β).

Because ϕ and ψ are smooth, n is a smooth, hence continuous, function of s.

This implies that n is a constant: otherwise we would have n(s0) �= n(s1) for

some s1 ∈ (α, β), and then by the intermediate value theorem the continuous

function n(s) would have to take all values between n(s0) and n(s1) when s

is between s0 and s1. But most real numbers between n(s0) and n(s1) are not

integers! Thus, n is actually independent of s, and since ψ(s0) = ϕ(s0) = ϕ0,

we must have n = 0 and hence ψ(s) = ϕ(s) for all s ∈ (α, β).

Definition 2.2.2

The smooth function ϕ in Proposition 2.2.1 is called the turning angle of γ

determined by the condition ϕ(s0) = ϕ0.

We are now in a position to give the geometric interpretation of the signed

curvature that we promised earlier.
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Proposition 2.2.3

Let γ(s) be a unit-speed plane curve, and let ϕ(s) be a turning angle for γ.

Then,

κs =
dϕ

ds
.

Thus, the signed curvature is the rate at which the tangent vector of the

curve rotates. As the diagrams following Eq. 2.5 show, the signed curvature is

positive or negative accordingly as t rotates anticlockwise or clockwise as one

moves along the curve in the direction of increasing s.

Proof

By Eq. 2.6 the tangent vector t = (cosϕ, sinϕ), so

ṫ = ϕ̇(− sinϕ, cosϕ).

Since ns = (− sinϕ, cosϕ), the equation ṫ = κsns gives the stated result.

Example 2.2.4

Let us find the signed curvature of the catenary (Exercise 1.2.1). Using the

parametrization γ(t) = (t, cosh t) we get γ̇ = (1, sinh t) and hence

s =

∫ t

0

√

1 + sinh2 t dt = sinh t,

so if ϕ is the angle between γ̇ and the x-axis,

tanϕ = sinh t = s,

∴ sec2 ϕ
dϕ

ds
= 1,

∴ κs =
dϕ

ds
=

1

sec2 ϕ
=

1

1 + tan2 ϕ
=

1

1 + s2
.

Proposition 2.2.3 has an interesting consequence in terms of the total signed

curvature of a unit-speed closed curve γ of length ℓ, namely
∫ ℓ

0

κs(s) ds. (2.8)

Corollary 2.2.5

The total signed curvature of a closed plane curve is an integer multiple of 2π.



2.2 Plane curves 39

Proof

Let γ be a unit-speed closed plane curve and let ℓ be its length. By

Proposition 2.2.3, the total signed curvature of γ is

∫ ℓ

0

dϕ

ds
ds = ϕ(ℓ)− ϕ(0),

where ϕ is a turning angle for γ. Now, γ is l -periodic (see Section 1.4):

γ(s+ ℓ) = γ(s).

Differentiating both sides gives

γ̇(s+ ℓ) = γ̇(s),

and in particular γ̇(ℓ) = γ̇(0). Hence, by Eq. 2.6,

(cosϕ(ℓ), sinϕ(ℓ)) = (cosϕ(0), sinϕ(0)),

which implies that ϕ(ℓ)− ϕ(0) is an integer multiple of 2π.

The next result shows that a unit-speed plane curve is essentially determined

once we know its signed curvature at each point of the curve. The meaning of

‘essentially’ here is ‘up to a direct isometry of R2’, i.e., a map M : R2 → R2 of

the form

M = Ta ◦ ρθ,

where ρθ is an anticlockwise rotation by an angle θ about the origin,

ρθ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ),

and Ta is the translation by the vector a,

Ta(v) = v+ a,

for any vectors (x, y) and v in R2 (see Appendix 1).

Theorem 2.2.6

Let k : (α, β) → R be any smooth function. Then, there is a unit-speed curve

γ : (α, β) → R2 whose signed curvature is k.

Further, if γ̃ : (α, β) → R2 is any other unit-speed curve whose signed

curvature is k, there is a direct isometry M of R2 such that

γ̃(s) = M(γ(s)) for all s ∈ (α, β).
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Proof

F or the first part, fix s0 ∈ (α, β) and define, for any s ∈ (α, β),

ϕ(s) =

∫ s

s0

k(u)du, (cf. Proposition 2.2.3),

γ(s) =

(∫ s

s0

cosϕ(t)dt,

∫ s

s0

sinϕ(t)dt

)

.

Then, the tangent vector of γ is

γ̇(s) = (cosϕ(s), sinϕ(s)),

which is a unit vector making an angle ϕ(s) with the x-axis. Thus, γ is unit-

speed and, by Proposition 2.2.3, its signed curvature is

dϕ

ds
=

d

ds

∫ s

s0

k(u)du = k(s).

For the second part, let ϕ̃(s) be a smooth turning angle for γ̃. Thus,

˙̃γ(s) = (cos ϕ̃(s), sin ϕ̃(s)),

∴ γ̃(s) =

(∫ s

s0

cos ϕ̃(t)dt,

∫ s

s0

sin ϕ̃(t)dt

)

+ γ̃(s0). (2.9)

By Proposition 2.2.3, k(s) = dϕ̃/ds so

ϕ̃(s) =

∫ s

s0

k(u)du+ ϕ̃(s0).

Inserting this into Eq. 2.9, and writing a for the constant vector γ̃(s0) and θ

for the constant scalar ϕ̃(s0), we get

γ̃(s) = Ta

(∫ s

s0

cos(ϕ(t) + θ)dt,

∫ s

s0

sin(ϕ(t) + θ)dt

)

= Ta

(

cos θ

∫ s

s0

cosϕ(t)dt − sin θ

∫ s

s0

sinϕ(t)dt,

sin θ

∫ s

s0

cosϕ(t)dt + cos θ

∫ s

s0

sinϕ(t)dt

)

= Taρθ

(∫ s

s0

cosϕ(t)dt,

∫ s

s0

sinϕ(t)dt

)

= Taρθ(γ(s)).



2.2 Plane curves 41

Example 2.2.7

Any regular plane curve γ whose curvature is a positive constant is part of a

circle. To see this, let κ be the curvature of γ, and let κs be its signed curvature.

Then, by Eq. 2.5,

κs = ±κ.

A priori, we could have κs = κ at some points of the curve and κs = −κ at

others, but in fact this cannot happen since κs is a continuous function of s

(see Exercise 2.2.2), so the intermediate value theorem tells us that, if κs takes

both the value κ and the value −κ, it must take all values between. Thus,

either κs = κ at all points of the curve, or κs = −κ at all points of the curve.

In particular, κs is constant.

The idea now is to show that, whatever the value of κs, we can find a

parametrized circle whose signed curvature is κs. The theorem then tells us

that every curve whose signed curvature is κs can be obtained by applying a

direct isometry to this circle. Since rotations and translations obviously take

circles to circles, it follows that every curve whose signed curvature is constant

is (part of) a circle.

A unit-speed parametrization of the circle with centre the origin and radius

R is
γ(s) =

(

R cos
s

R
,R sin

s

R

)

.

Its tangent vector

t = γ̇ =
(

− sin
s

R
, cos

s

R

)

is the unit vector making an angle π/2 + s/R with the positive x-axis:

t

s=R

x
s=R

Hence, the signed curvature of γ is

d

ds

(π

2
+

s

R

)

=
1

R
.

Thus, if κs > 0, the circle of radius 1/κs has signed curvature κs.
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If κs < 0, it is easy to check that the curve

γ̃(s) =
(

R cos
s

R
,−R sin

s

R

)

(which is just another parametrization of the circle with centre the origin and

radius R) has signed curvature −1/R. Thus, if R = −1/κs we again get a circle

with signed curvature κs.

These calculations should be compared to the analogous ones for curvature

(as opposed to signed curvature) following Definition 2.1.1.

Example 2.2.8

Theorem 2.2.6 shows that we can find a plane curve with any given smooth

function as its signed curvature. But simple curvatures can lead to complicated

curves. For example, let the signed curvature be κs(s) = s. Following the proof

of Theorem 2.2.6, and taking s0 = 0, we get ϕ(s) =
∫ s

0
udu = s2

2 so

γ(s) =

(∫ s

0

cos

(

t2

2

)

dt,

∫ s

0

sin

(

t2

2

)

dt

)

.

These integrals cannot be evaluated in terms of ‘elementary’ functions. (They

arise in the theory of diffraction of light, where they are called Fresnel’s inte-

grals, and the curve γ is called Cornu’s Spiral, although it was first considered

by Euler.) The picture of γ above is obtained by computing the integrals nu-

merically.
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y

x

y

x

It is natural to ask whether Theorem 2.2.6 remains true if we replace ‘signed

curvature’ by ‘curvature’. The first part holds if (and only if) we assume that

k ≥ 0, for then γ can be chosen to have signed curvature k and so will have

curvature k as well. The second part of Theorem 2.2.6, however, no longer

holds. For, we can take a (smooth) curve γ that coincides with the x-axis for

−1 ≤ x ≤ 1 (say), and is otherwise above the x-axis. (The reader who wishes

to write down such a curve explicitly will find the solution of Exercise 9.4.3

helpful.) We now reflect the part of the curve with x ≤ 0 in the x-axis. The

new curve has the same curvature as γ, but obviously cannot be obtained by

applying an isometry to γ. See Exercise 2.2.3 for a version of Theorem 2.2.6

that is valid for curvature instead of signed curvature.

EXERCISES

2.2.1 Show that, if γ is a unit-speed plane curve,

ṅs = −κst.

2.2.2 Show that the signed curvature of any regular plane curve γ(t) is a

smooth function of t. (Compare with Exercise 2.1.2.)

2.2.3 Let γ and γ̃ be two plane curves. Show that, if γ̃ is obtained from γ

by applying an isometry M of R2, the signed curvatures κs and κ̃s of

γ and γ̃ are equal if M is direct but that κ̃s = −κs if M is opposite

(in particular, γ and γ̃ have the same curvature). Show, conversely,

that if γ and γ̃ have the same nowhere-vanishing curvature, then γ̃

can be obtained from γ by applying an isometry of R2.

2.2.4 Let k be the signed curvature of a plane curve C expressed in terms

of its arc-length. Show that, if Ca is the image of C under the dilation
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v 
→ av of the plane (where a is a non-zero constant), the signed

curvature of Ca in terms of its arc-length s is 1
ak(

s
a ).

A heavy chain suspended at its ends hanging loosely takes the form

of a plane curve C. Show that, if s is the arc-length of C measured

from its lowest point, ϕ the angle between the tangent of C and the

horizontal, and T the tension in the chain, then

T cosϕ = λ, T sinϕ = µs,

where λ, µ are non-zero constants (we assume that the chain has

constant mass per unit length). Show that the signed curvature of

C is

κs =
1

a

(

1 +
s2

a2

)−1

,

where a = λ/µ, and deduce that C can be obtained from the catenary

in Example 2.2.4 by applying a dilation and an isometry of the plane.

2.2.5 Let γ(t) be a regular plane curve and let λ be a constant. The parallel

curve γ
λ of γ is defined by

γ
λ(t) = γ(t) + λns(t).

Show that, if λκs(t) �= 1 for all values of t, then γ
λ is a regular curve

and that its signed curvature is κs/|1− λκs|.

2.2.6 Another approach to the curvature of a unit-speed plane curve γ at

a point γ(s0) is to look for the ‘best approximating circle’ at this

point. We can then define the curvature of γ to be the reciprocal of

the radius of this circle.

Carry out this programme by showing that the centre of the circle

which passes through three nearby points γ(s0) and γ(s0 ± δs) on

γ approaches the point

ǫ(s0) = γ(s0) +
1

κs(s0)
ns(s0)

as δs tends to zero. The circle C with centre ǫ(s0) passing through

γ(s0) is called the osculating circle to γ at the point γ(s0), and

ǫ(s0) is called the centre of curvature of γ at γ(s0). The radius of C

is 1/|κs(s0)| = 1/κ(s0), where κ is the curvature of γ – this is called

the radius of curvature of γ at γ(s0).
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2.2.7 With the notation in the preceding exercise, we regard ǫ as the

parametrization of a new curve, called the evolute of γ (if γ is any

regular plane curve, its evolute is defined to be that of a unit-speed

reparametrization of γ). Assume that κ̇s(s) �= 0 for all values of s

(a dot denoting d/ds), say κ̇s > 0 for all s (this can be achieved

by replacing s by −s if necessary). Show that the arc-length of ǫ is

− 1
κs(s)

(up to adding a constant), and calculate the signed curvature

of ǫ. Show also that all the normal lines to γ are tangent to ǫ (for

this reason, the evolute of γ is sometimes described as the ‘envelope’

of the normal lines to γ). Show that the evolute of the cycloid

γ(t) = a(t− sin t, 1− cos t), 0 < t < 2π,

where a > 0 is a constant, is

ǫ(t) = a(t+ sin t,−1 + cos t)

(see Exercise 1.1.7) and that, after a suitable reparametrization, ǫ

can be obtained from γ by a translation of the plane.

2.2.8 A string of length ℓ is attached to the point γ(0) of a unit-speed plane

curve γ(s). Show that when the string is wound onto the curve while

being kept taught, its endpoint traces out the curve

ι(s) = γ(s) + (ℓ− s)γ̇(s),

where 0 < s < ℓ and a dot denotes d/ds. The curve ι is called

the involute of γ (if γ is any regular plane curve, we define its involute

to be that of a unit-speed reparametrization of γ). Suppose that the

signed curvature κs of γ is never zero, say κs(s) > 0 for all s. Show

that the signed curvature of ι is 1/(ℓ− s).

2.2.9 Show that the involute of the catenary

γ(t) = (t, cosh t)

with l = 0 (see the preceding exercise) is the tractrix

x = cosh−1

(

1

y

)

−
√

1− y2.

See Section 8.3 for a simple geometric characterization of this curve.

2.2.10 A unit-speed plane curve γ(s) rolls without slipping along a

straight line ℓ parallel to a unit vector a, and initially touches ℓ

at a point p = γ(0). Let q be a point fixed relative to γ. Let Γ(s)

be the point to which q has moved when γ has rolled a distance s
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along ℓ (note that Γ will not usually be unit-speed). Let θ(s) be the

angle between a and the tangent vector γ̇. Show that

Γ(s) = p+ sa+ ρ−θ(s)(q− γ(s)),

where ρϕ is the rotation about the origin through an angle ϕ. Show

further that

Γ̇(s) · ρ−θ(s)(q− γ(s)) = 0.

Geometrically, this means that a point on Γ moves as if it is rotating

about the instantaneous point of contact of the rolling curve with ℓ.

See Exercise 1.1.7 for a special case.

2.3 Space curves

Our main interest in this book is in curves (and surfaces) in R3, i.e., space

curves. While a plane curve is essentially determined by its curvature (see

Theorem 2.2.6), this is no longer true for space curves. For example, a circle

of radius 1 in the xy-plane and a circular helix with a = b = 1/2 (see Exam-

ple 2.1.3) both have curvature 1 everywhere, but it is obviously impossible to

change one curve into the other by any isometry of R3. We shall define an-

other type of curvature for space curves, called the torsion, and we shall prove

that the curvature and torsion of a curve together determine the curve up to a

direct isometry of R3.

Let γ(s) be a unit-speed curve in R3, and let t = γ̇ be its unit tangent

vector. If the curvature κ(s) is non-zero, we define the principal normal of γ

at the point γ(s) to be the vector

n(s) =
1

κ(s)
ṫ(s). (2.10)

Since ‖ ṫ ‖= κ, n is a unit vector. Further, by Proposition 1.2.4, t · ṫ = 0, so t

and n are actually perpendicular unit vectors. It follows that

b = t× n (2.11)

is a unit vector perpendicular to both t and n. The vector b(s) is called the

binormal vector of γ at the point γ(s). Thus, {t,n,b} is an orthonormal basis

of R3, and is right-handed, i.e.,

b = t× n, n = b× t, t = n× b.
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n

b

t

Since b(s) is a unit vector for all s, ḃ is perpendicular to b. Now we use the

‘product rule’ for differentiating the vector product of vector-valued functions

u and v of a parameter s:

d

ds
(u× v) =

du

ds
× v+ u×

dv

ds
.

(This is easily proved by writing out both sides in component form and using

the usual product rule for differentiating scalar functions.) Applying this to

b = t× n gives

ḃ = ṫ× n+ t× ṅ = t× ṅ, (2.12)

since by the definition (2.10) of n, ṫ × n = κn × n = 0. Equation 2.12 shows

that ḃ is perpendicular to t. Being perpendicular to both t and b, ḃ must be

parallel to n, so

ḃ = −τn, (2.13)

for some scalar τ , which is called the torsion of γ (inserting the minus sign

here will reduce the total number of minus signs later). Note that the torsion

is only defined if the curvature is non-zero.

Of course, we define the torsion of an arbitrary regular curve γ to be that

of a unit-speed reparametrization of γ. As in the case of the curvature, to see

that this makes sense, we have to investigate how the torsion is affected by a

change in the unit-speed parameter of γ of the form

u = ±s+ c,

where c is a constant. But this change of parameter clearly has the following

effect on the vectors introduced above:

t 
→ ±t, ṫ 
→ ṫ, n 
→ n, b 
→ ±b, ḃ 
→ ḃ;

it follows from Eq. 2.13 that τ 
→ τ . Thus, the curvature and torsion are well-

defined for any regular curve.
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Just as we did for the curvature in Proposition 2.1.2, it is possible to give

a formula for the torsion of a regular space curve γ in terms of γ itself, rather

than in terms of a unit-speed reparametrization:

Proposition 2.3.1

Let γ(t) be a regular curve in R3 with nowhere-vanishing curvature. Then,

denoting d/dt by a dot, its torsion is given by

τ =
(γ̇ × γ̈) ·

...
γ

‖ γ̇ × γ̈ ‖2
. (2.14)

Note that this formula shows that τ(t) is defined at all points γ(t) of the

curve at which its curvature κ(t) is non-zero, since by Proposition 2.1.2 this is

the condition for the denominator on the right-hand side to be non-zero.

Proof

We could ‘derive’ Eq. 2.14 by imitating the proof of Proposition 2.1.2. But it

is easier and clearer to proceed as follows, even though this method has the

disadvantage that one must know the formula (2.14) for τ in advance.

We first treat the case in which γ is unit-speed. Using Eqs. 2.11 and 2.13,

τ = −n · ḃ = −n · (t× n)̇ = −n · (ṫ× n+ t× ṅ) = −n · (t× ṅ).

Now, n = 1
κ ṫ =

1
κ γ̈, so

τ = −
1

κ
γ̈ ·

(

γ̇ ×
d

dt

(

1

κ
γ̈

))

= −
1

κ
γ̈ ·

(

γ̇ ×

(

1

κ

...
γ −

κ̇

κ2
γ̈

))

=
1

κ2

...
γ · (γ̇ × γ̈),

since γ̈ · (γ̇ × γ̈) = 0 and γ̈ · (γ̇ ×
...
γ) = −

...
γ · (γ̇ × γ̈). This agrees with Eq. 2.14,

for, since γ is unit-speed, γ̇ and γ̈ are perpendicular, so

‖ γ̇ × γ̈ ‖= ‖ γ̇ ‖‖ γ̈ ‖= ‖ γ̈ ‖= κ.

In the general case, let s be arc-length along γ. Then,

dγ

dt
=

ds

dt

dγ

ds
,

d2γ

dt2
=

(

ds

dt

)2
d2γ

ds2
+

d2s

dt2
dγ

ds
,

d3γ

dt3
=

(

ds

dt

)3
d3γ

ds3
+ 3

ds

dt

d2s

dt2
d2γ

ds2
+

d3s

dt3
dγ

ds
.

Hence,

γ̇ × γ̈ =

(

ds

dt

)3 (
dγ

ds
×

d2γ

ds2

)

,

...
γ · (γ̇ × γ̈) =

(

ds

dt

)6 (
d3γ

ds3
·

(

dγ

ds
×

d2γ

ds2

))

.
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So the torsion of γ is

τ =

(

d 3 γ
ds3 ·

(

dγ
ds × d2γ

ds2

))

∣

∣

∣

∣

∣

∣

dγ
ds × d2γ

ds2

∣

∣

∣

∣

∣

∣

2 =

...
γ · (γ̇ × γ̈)

‖ γ̇ × γ̈ ‖2
.

Example 2.3.2

We compute the torsion of the circular helix γ(θ) = (a cos θ, a sin θ, bθ) studied

in Example 2.1.3. We have

γ̇(θ) = (−a sin θ, a cos θ, b), γ̈(θ) = (−a cos θ,−a sin θ, 0),
...
γ(θ) = (a sin θ,−a cos θ, 0), γ̇ × γ̈ = (ab sin θ,−ab cos θ, a2),

‖ γ̇ × γ̈ ‖2= a2(a2 + b2), (γ̇ × γ̈) ·
...
γ = a2b,

so the torsion

τ =
(γ̇ × γ̈) ·

...
γ

‖ γ̇ × γ̈ ‖2
=

a2b

a2(a2 + b2)
=

b

a2 + b2
.

Note that the torsion of the circular helix in Example 2.3.2 becomes zero

when b = 0, in which case the helix is just a circle in the xy-plane. This gives

us a clue to the geometrical interpretation of torsion, contained in the next

proposition.

Proposition 2.3.3

Let γ be a regular curve in R3 with nowhere vanishing curvature (so that the

torsion τ of γ is defined). Then, the image of γ is contained in a plane if and

only if τ is zero at every point of the curve.

Proof

We can assume that γ is unit-speed (for this can be achieved by reparametrizing

γ, and reparametrizing changes neither the torsion nor the fact that γ is, or is

not, contained in a plane). We denote the parameter of γ by s and d/ds by a

dot as usual.

Suppose first that the image of γ is contained in the plane v ·N = d, where

N is a constant vector and d is a constant scalar and v ∈ R3. We can assume

that N is a unit vector. Differentiating γ ·N = d with respect to s, we get

t ·N =0, (2.15)

∴ ṫ ·N =0 (since Ṅ = 0),
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∴ κn ·N =0 (since ṫ = κn),

∴ n ·N =0 (since κ �= 0). (2.16)

Equations 2.15 and 2.16 show that t and n are perpendicular to N. It follows

that b = t×n is parallel to N. Since N and b are both unit vectors, and b(s)

is a smooth (hence continuous) function of s, we must have b(s) = N for all s

or b(s) = −N for all s. In both cases, b is a constant vector. But then ḃ = 0,

so τ = 0.

Conversely, suppose that τ = 0 everywhere. By Eq. 2.13, ḃ = 0, so b is a

constant vector. The first part of the proof suggests that γ should be contained

in a plane v · b = constant. We therefore consider

d

ds
(γ · b) = γ̇ · b = t · b = 0,

so γ · b is a constant (scalar), say d. This means that γ is indeed contained in

the plane v · b = d.

There is a gap in our calculations which we would like to fill. Namely, we

know that, for a unit-speed curve, we have

ṫ = κn and ḃ = −τn

(these were our definitions of n and τ , respectively), but we have not com-

puted ṅ. This is not d������� Since {t,n,b} is a right-handed orthonormal

basis of R3,
t× n = b, n× b = t, b× t = n.

Hence,

ṅ = ḃ× t+ b× ṫ = −τn× t+ κb× n = −κt+ τb.

Putting all these together, we get the following theorem.

Theorem 2.3.4

Let γ be a unit-speed curve in R3 with nowhere vanishing curvature. Then,

ṫ = κn

ṅ = −κt+ τb (2.17)

ḃ = −τn.

Equations 2.17 are called the Frenet–Serret equations. Notice that the matrix
⎛

⎝

0 κ 0

−κ 0 τ

0 −τ 0

⎞

⎠



2.3 Space curves 51

which expresses ṫ, ṅ and ḃ in terms of t, n and b is skew-symmetric, i.e., it is

equal to the negative of its transpose. This helps when trying to remember the

equations. (The ‘reason’ for this skew-symmetry can be seen in Exercise 2.3.6.)

Here is a simple application of Frenet–Serret:

Proposition 2.3.5

Let γ be a unit-speed curve in R3 with constant curvature and zero torsion.

Then, γ is a parametrization of (part of) a circle.

Proof

This result is actually an immediate consequence of Example 2.2.7 and

Proposition 2.3.3, but the following proof is instructive and gives more in-

formation, namely the centre and radius of the circle and the plane in which it

lies.

By the proof of Proposition 2.3.3, the binormal b is a constant vector and

γ is contained in a plane Π, say, perpendicular to b. Now

d

ds

(

γ +
1

κ
n

)

= t+
1

κ
ṅ = 0,

using the fact that the curvature κ is constant and the Frenet–Serret equation

ṅ = −κt+ τb = −κt (since τ = 0)

(the reason for considering γ + 1
κn can be found in Exercise 2.2.6). Hence,

γ + 1
κn is a constant vector, say a, and we have

‖ γ − a ‖= ‖ −
1

κ
n ‖=

1

κ
.

This shows that γ lies on the sphere S, say, with centre a and radius 1/κ.

The intersection of Π and S is a circle, say C, and we have shown that γ is a

parametrization of part of C. If r is the radius of C, we have κ = 1/r so r = 1/κ

is also the radius of S. It follows that C is a great circle on S, i.e., that Π passes

through the centre a of S. Thus, a is the centre of C and the equation of Π is

v · b = a · b.

We conclude this chapter with the analogue of Theorem 2.2.6 for space

curves.
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Theorem 2.3.6

Let γ(s) and γ̃(s) be two unit-speed curves in R3 with the same curvature

κ(s) > 0 and the same torsion τ(s) for all s. Then, there is a direct isometry

M of R3 such that
γ̃(s) = M(γ(s)) for all s.

Further, if k and t are smooth functions with k > 0 everywhere, there is a

unit-speed curve in R3 whose curvature is k and whose torsion is t.

Proof

Let t,n and b be the tangent vector, principal normal and binormal of γ, and

let t̃, ñ and b̃ be those of γ̃. Let s0 be a fixed value of the parameter s, let θ be

the angle between t(s0) and t̃(s0) and let ρ be the rotation through an angle θ

around the axis passing through the origin and perpendicular to both of these

vectors. Then, ρ(t(s0)) = t̃(s0); let n̂ = ρ(n(s0)), b̂ = ρ(b(s0)). If ϕ is the angle

between n̂ and ñ(s0), let ρ
′ be the rotation through an angle ϕ around the axis

passing through the origin parallel to t̃(s0). Then, ρ
′ fixes t̃(s0) and takes n̂

to ñ(s0). Since {t(s0),n(s0),b(s0)} and {t̃(s0), ñ(s0), b̃(s0)} are both right-

handed orthonormal bases of R3, ρ′ ◦ ρ takes the vectors t(s0),n(s0),b(s0) to

the vectors t̃(s0), ñ(s0), b̃(s0), respectively. Now let M be the direct isometry

M = Tγ̃(s0)−γ(s0) ◦ ρ′ ◦ ρ. By Exercise 2.3.5, the curve Γ = M(γ) is unit-

speed, and if T, N and B denote its unit tangent vector, principal normal and

binormal, we have

Γ(s0) = γ̃(s0), T(s0) = t̃(s0), N(s0) = ñ(s0), B(s0) = b̃(s0). (2.18)

The trick now is to consider the expression

A(s) = t̃ ·T+ ñ ·N+ b̃ ·B.

In view of Eq. 2.18, we have A(s0) = 3. On the other hand, since t̃ and T are

unit vectors, t̃ ·T ≤ 1, with equality holding if and only if t̃ = T; and similarly

for ñ ·N and b̃ ·B. It follows that A(s) ≤ 3, with equality holding if and only

if t̃ = T, ñ = N and b̃ = B. Thus, if we can prove that A is constant, it will

follow in particular that t̃ = T, i.e., that ˙̃γ = Γ̇, and hence that γ̃(s)− Γ(s) is

a constant. But by Eq. 2.18 again, this constant vector must be zero, so γ̃ = Γ.

For the first part of the theorem, we are therefore reduced to proving that

A is constant. But, using the Frenet–Serret equations,

Ȧ = ˙̃t ·T+ ˙̃n ·N+
˙̃
b ·B+ t̃ · Ṫ+ ñ · Ṅ+ b̃ · Ḃ

= κñ ·T+ (−κt̃+ τ b̃) ·N+ (−τ ñ) ·B+ t̃ · κN

+ñ · (−κT+ τB) + b̃ · (−τN),

and this vanishes since the terms cancel in pairs.
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For the second part of the theorem, we observe first that it follows from the

theory of ordinary differential equations that the equations

Ṫ = kN, (2.19)

Ṅ = − kT+ tB, (2.20)

Ḃ = − tN (2.21)

have a unique solution T(s),N(s),B(s) such that T(s0),N(s0),B(s0) are the

standard orthonormal vectors i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1), respec-

tively. Since the matrix
⎛

⎝

0 k 0

−k 0 t

0 −t 0

⎞

⎠

expressing Ṫ, Ṅ and Ḃ in terms of T,N and B is skew-symmetric, it follows

that the vectors T, N and B are orthonormal for all values of s (see Exercise

2.3.6).

Now define

γ(s) =

∫ s

s0

T(u)du.

Then, γ̇ = T, so since T is a unit vector, γ is unit-speed. Next, Ṫ = kN

by Eq. 2.19, so since N is a unit vector, k is the curvature of γ and N is its

principal normal. Next, since B is a unit vector perpendicular to T and N,

B = λT ×N where λ is a smooth function of s that is equal to ±1 for all s.

Since k = i× j, we have λ(s0) = 1, so it follows that λ(s) = 1 for all s. Hence,

B is the binormal of γ and by Eq. 2.21, t is its torsion.

EXERCISES

2.3.1 Compute κ, τ, t,n and b for each of the following curves, and verify

that the Frenet–Serret equations are satisfied:

(i) γ(t) =
(

1
3 (1 + t)3/2 1

3 (1− t)3/2, t√
2

)

.

(ii) γ(t) =
(

4
5 cos t, 1− sin t,− 3

5 cos t
)

.

Show that the curve in (ii) is a circle, and find its centre, radius and

the plane in which it lies.

2.3.2 Describe all curves in R3 which have constant curvature κ > 0 and

constant torsion τ .
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2.3.3 A regular curve γ in R3 with curvature > 0 is called a generalized

helix if its tangent vector makes a fixed angle θ with a fixed unit

vector a. Show that the torsion τ and curvature κ of γ are related

by τ = ±κ cot θ. Show conversely that, if the torsion and curvature

of a regular curve are related by τ = λκ where λ is a constant, then

the curve is a generalized helix.

In view of this result, Examples 2.1.3 and 2.3.2 show that a circular

helix is a generalized helix. Verify this directly.

2.3.4 Let γ(t) be a unit-speed curve with κ(t) > 0 and τ(t) �= 0 for all t.

Show that, if γ is spherical, i.e., if it lies on the surface of a sphere,

then
τ

κ
=

d

ds

(

κ̇

τκ2

)

. (2.22)

Conversely, show that if Eq. 2.22 holds, then

ρ2 + (ρ̇σ)2 = r2

for some (positive) constant r, where ρ = 1/κ and σ = 1/τ , and

deduce that γ lies on a sphere of radius r. Verify that Eq. 2.22 holds

for Viviani’s curve (Exercise 1.1.8).

2.3.5 Let P be an n×n orthogonal matrix and let a ∈ Rn, so that M(v) =

Pv + a is an isometry of R3 (see Appendix 1). Show that, if γ is a

unit-speed curve in Rn, the curve Γ = M(γ) is also unit-speed. Show

also that, if t,n,b and T,N,B are the tangent vector, principal

normal and binormal of γ and Γ, respectively, thenT = P t,N = Pn

and B = Pb.

2.3.6 Let (aij) be a skew-symmetric 3 × 3 matrix (i.e., aij = −aji for

all i, j). Let v1,v2 and v3 be smooth functions of a parameter s

satisfying the differential equations

v̇i =

3
∑

j=1

aijvj ,

for i = 1, 2 and 3, and suppose that for some parameter value s0 the

vectors v1(s0),v2(s0) and v3(s0) are orthonormal. Show that the

vectors v1(s),v2(s) and v3(s) are orthonormal for all values of s.

For the remainder of this book,

all parametrized curves will be assumed to be regular.
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Globalproperties of curves

All the properties of curves that we have discussed so far are ‘local’: they

depend only on the behaviour of a curve near a given point and not on the

‘global’ shape of the curve. Proving global results about curves often requires

concepts from topology, in addition to the calculus techniques we have used

in the first two chapters of this book. Since we are not assuming that readers

of this book have extensive familiarity with topological ideas, we will not be

able to give complete proofs of some of the global results about curves that we

discuss in this chapter.

3.1 Simple closed curves

In this chapter, we shall consider plane curves of the following type.

Definition 3.1.1

A simple closed curve in R2 is a closed curve in R2 that has no self-intersections.

It is a standard, but highly non-trivial, result of the topology of R2, called

the Jordan Curve Theorem, that any simple closed curve in the plane has an

‘interior’ and an ‘exterior’: more precisely, the complement of the image of γ

Andrew Pressley, Elementary Differential Geometry: Second Edition, 55
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-891-9 3,
c© Springer-Verlag London Limited 2010
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(i.e., the set of points of R2 that are not in the image of γ) is the disjoint

union of two subsets of R2, denoted by int(γ) and ext(γ), with the following

properties:

(i) int(γ) is bounded, i.e., it is contained inside a circle of sufficiently large

radius.

(ii) ext(γ) is unbounded.

(iii) Both of the regions int(γ) and ext(γ) are connected, i.e., they have the

property that any two points in the same region can be joined by a curve

contained entirely in the region (but any curve joining a point of int(γ) to

a point of ext(γ) must cross the curve γ).

Example 3.1.2

The ellipse γ(t) = (p cos t, q sin t), where p and q are non-zero constants, is

a simple closed curve with period 2π. The interior and exterior of γ are, of

course, given by
{

(x, y) ∈ R2 | x2

p2 + y2

q2 < 1
}

and
{

(x, y) ∈ R2 | x2

p2 + y2

q2 > 1
}

,

respectively.

Not all examples of simple closed curves have such an obvious interior and

exterior, however. Is the point p in the interior or the exterior of the simple

closed curve shown below?

P

Example 3.1.3

The limaçon in Example 1.1.7 is closed but is not a simple closed curve as it

has a self-intersection – see Exercise 3.1.1.

The fact that a simple closed curve has an interior and an exterior enables

us to distinguish between the two possible orientations of γ. We shall say that

γ is positively-oriented if the signed unit normal ns of γ (see Section 2.2) points
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into int(γ) at every point of γ. This can always be achieved by replacing the

parameter t of γ by −t, if necessary. In the diagrams below, the arrow indicates

the direction of increasing parameter. Is the simple closed curve shown above

positively-oriented?

t

ns

ns

t

Positively-oriented Not positively-oriented

We conclude this section by stating the following important result.

Theorem 3.1.4 (Hopf’s Umlaufsatz)

The total signed curvature of a simple closed curve in R2 is ±2π.

The proof of Theorem 3.1.4 would take us a little further into the realm of

topology than is appropriate for this book. A heuristic proof (of a slightly more

general result) is given in Section 13.1.

Note that Corollary2.2.5 shows that the total signed curvature of any closed

curve in R2 is an integer multiple of 2π. The point of Hopf’s theorem is that

if the curve is simple closed, this integer must be ±1. The German word

‘Umlaufsatz’ means ‘rotation theorem’: from the proof of Corollary2.2.5 we

see that Hopf’s theorem says that any turning angle ϕ of a simple closed curve

changes by ±2π on going once round the curve, which means that the tangent

vector rotates by ±2π. The reader might like to check that this property holds

for the maze-like simple closed curve preceding Example 3.1.3.

EXERCISES

3.1.1 Show that
γ(t) = ((1 + a cos t) cos t, (1 + a cos t) sin t),

where a is a constant, is a simple closed curve if |a| < 1, but that

if |a| > 1 its complement is the disjoint union of three connected

subsets of R2, two of which are bounded and one is unbounded.

What happens if a = ±1?
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3.2 The isoperimetric inequality

The area contained by a simple closed curve γ is

A(γ) =

∫

int(γ)

dxdy . (3.1)

This can be computed by using the following theorem.

Green’s Theorem Let f(x, y) and g(x, y) be smooth functions (i.e., functions

with continuous partial derivatives of all orders), and let γ be a positively-

oriented simple closed curve. Then,
∫

int(γ)

(

∂g

∂x
−

∂f

∂y

)

dxdy =

∫

γ

f(x, y)dx + g(x, y)dy .

A proof can be found in standard books on multivariable calculus.

Proposition 3.2.1

If γ(t) = (x(t), y(t)) is a positively-oriented simple closed curve in R2 with

period T , then

A(γ) =
1

2

∫ T

0

(xẏ − yẋ)dt . (3.2)

Proof

Taking f = − 1
2y, g = 1

2x in Green’s theorem, we get

A(γ) =
1

2

∫

γ

xdy − ydx ,

which gives Eq. 3.2 immediately.

Note that, although the formula in Eq. 3.2 involves the parameter t of γ, it

is clear from the Definition 3.1.1 that A(γ) is unchanged if γ is reparametrized.

One of the most famous global results about plane curves is the following

theorem.

Theorem 3.2.2 (Isoperimetric Inequality)

Let γ be a simple closed curve, let ℓ(γ) be its length and let A(γ) be the area

contained by it. Then,

A(γ) ≤ 1

4π
ℓ(γ)2,

and equality holds if and only if γ is a circle.
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Of course, it is obvious that equality holds when γ is a circle, since in that

case ℓ(γ) = 2πR and A(γ) = πR2, where R is the radius of the circle.

To prove this theorem, we need the following result from analysis:

Proposition 3.2.3 (Wirtinger’s Inequality)

Let F : [0, π] → R be a smooth function such that F (0) = F (π) = 0. Then,

∫

π

0

(

dF

dt

)2

dt ≥
∫

π

0

F (t)2dt ,

and equality holds if and only if F (t) = D sin t for all t ∈ [0, π], where D is a

constant.

Assuming this result for the moment, we show how to deduce the isoperi-

metric inequality from it.

Proof

We start by making some assumptions about γ that will simplify the proof.

First, we can, if we wish, assume that γ is parametrized by arc-length s. How-

ever, because of the π that appears in Theorem 3.2.2, it turns out to be more

convenient to assume that the period of γ is π. If we change the parameter of

γ from s to

t =
πs

ℓ(γ)
, (3.3)

the resulting curve is still simple closed, and has period π because when

s increases by ℓ(γ), t increases by π. We shall therefore assume that γ is

parametrized using the parameter t in Eq. 3.3 from now on.

For the second simplification, we note that both ℓ(γ) and A(γ) are un-

changed if γ is subjected to a translation γ(t) �→ γ(t) + b, where b is any

constant vector (see Exercise 3.2.1). Taking b = −γ(0), we might as well as-

sume that γ(0) = 0 to begin with, i.e., we assume that γ begins and ends at

the origin.

To prove Theorem 3.2.2, we shall calculate ℓ(γ) and A(γ) by using polar

coordinates

x = r cos θ, y = r sin θ.

Using the chain rule, it is easy to show that

ẋ2 + ẏ2 = ṙ2 + r2θ̇2, xẏ − yẋ = r2θ̇,
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with d/dt denoted by a dot. Then, using Eq. 3.3,

ṙ2 + r2θ̇2 =

(

dx

dt

)2

+

(

dy

dt

)2

=

(

(

dx

ds

)2

+

(

dy

ds

)2
)

(

ds

dt

)2

=
ℓ(γ)2

π2
, (3.4)

since (dx/ds)2 + (dy/ds)2 = 1. Further, by Eq. 3.2, we have

A(γ) =
1

2

∫

π

0

(xẏ − yẋ)dt =
1

2

∫

π

0

r2θ̇dt . (3.5)

To prove Theorem 3.2.2, we have to show that

ℓ(γ)2

4π
−A(γ) ≥ 0,

with equality holding if and only if γ is a circle. By Eq. 3.4,

∫ π

0

(ṙ2 + r2θ̇2)dt =
ℓ(γ)2

π
.

Hence, using Eq. 3.5,

ℓ(γ)2

4π
−A(γ) =

1

4

∫

π

0

(ṙ2 + r2θ̇2)dt−
1

2

∫

π

0

r2θ̇dt =
1

4
I,

where

I =

∫ π

0

(ṙ2 + r2θ̇2 − 2r2θ̇)dt . (3.6)

Thus, to prove Theorem 3.2.2, we have to show that I ≥ 0, and that I = 0 if

and only if γ is a circle.

By simple algebra,

I =

∫

π

0

r2(θ̇ − 1)2dt +

∫

π

0

(ṙ2 − r2)dt . (3.7)

The first integral on the right-hand side of Eq. 3.7 is obviously ≥ 0, and the

second integral is ≥ 0 by Wirtinger’s inequality (we are taking F = r: note that

r(0) = r(π) = 0 since γ(0) = γ(π) = 0). Hence, I ≥ 0. Further, since both

integrals on the right-hand side of Eq. 3.7 are ≥ 0, their sum I is zero if and

only if both of these integrals are zero. But the first integral is zero only if θ̇ = 1

for all t, and the second is zero only if r = D sin t for some constant D (by

Wirtinger again). So θ = t+α, where α is a constant, and hence r = D sin(θ−α).

It is easy to see that this is the polar equation of a circle of diameter D, thus

completing the proof of Theorem 3.2.2 (see the diagram below).
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µ - ®

®

µ

r

We now prove Wirtinger’s inequality.

Let G(t) = F (t)/ sin t. Then, denoting d/dt by a dot as usual,
∫

π

0

Ḟ 2dt =

∫

π

0

(Ġ sin t+G cos t)2dt

=

∫ π

0

Ġ2 sin2 t dt + 2

∫ π

0

GĠ sin t cos t dt +

∫ π

0

G2 cos2 t dt .

Integrating by parts1:

2

∫ π

0

GĠ sin t cos t dt = G2 sin t cos t
∣

∣

π

0
−

∫ π

0

G2(cos2 t− sin2 t)dt

=

∫

π

0

G2(sin2 t− cos2 t)dt .

Hence,
∫

π

0

Ḟ 2dt =

∫

π

0

Ġ2 sin2 t dt +

∫

π

0

G2(sin2 t− cos2 t)dt +

∫

π

0

G2 cos2 t dt

=

∫ π

0

(G2 + Ġ2) sin2 t dt =

∫ π

0

F 2dt+

∫ π

0

Ġ2 sin2 t dt ,

and so ∫

π

0

Ḟ 2dt −

∫

π

0

F 2dt =

∫

π

0

Ġ2 sin2 t dt .

The integral on the right-hand side is obviously ≥ 0, and it is zero if and only

if Ġ = 0 for all t, i.e., if and only if G(t) is equal to a constant, say D, for all

t, which means that F (t) = D sin t.

1 In performing the integration by parts, we assume that G is continuously differen-
tiable (for we assume that the function G(t)2 sin t cos t is equal to the integral of its
derivative). Unfortunately, G(t) is not even defined when t = 0 or π, as the ratio
F (t)/ sin t is 0/0 there. So we must show that G can be defined at these points
so as to become continuously differentiable everywhere. This can be done by using
l’Hospital’s rule.
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EXERCISES

3.2.1 Show that the length ℓ(γ) and the area A(γ) are unchanged by

applying an isometry to γ.

3.2.2 By applying the isoperimetric inequality to the ellipse

x2

p2
+

y2

q2
= 1

(where p and q are positive constants), prove that

∫ 2π

0

√

p2 sin2 t+ q2 cos2 t dt ≥ 2π
√
pq,

with equality holding if and only if p = q.

3.3 The four vertex theorem

We conclude this chapter with a famous result about convex curves in the

plane. A simple closed curve γ is called convex if its interior int(γ) is convex,

in the sense that the straight line segment joining any two points of int(γ) is

contained entirely in int(γ).

not convexconvex

Definition 3.3.1

A vertex of a curve γ(t) in R2 is a point where its signed curvature κs has a

stationary point, i.e., where dκs/dt = 0.

It is easy to see that this definition is independent of the parametrization

of γ.
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Example 3.3.2

The signed curvature of the ellipse γ(t) = (p cos t, q sin t), where p and q are

positive constants, is easily found to be

κs(t) =
pq

(p2 sin2 t+ q2 cos2 t)3/2
.

Then,
dκs

dt
=

3pq(q2 − p2) sin t cos t

(p2 sin2 t+ q2 cos2 t)5/2

vanishes at exactly four points of the ellipse, namely the points with t =

0, π/2, π and 3π/2, which are the ends of the two axes of the ellipse.

The following theorem says that this is the smallest number of vertices a

convex simple closed curve can have.

Theorem 3.3.3 (Four Vertex Theorem)

Every convex simple closed curve in R2 has at least four vertices.

The conclusion of this theorem actually remains true without the assump-

tion of convexity, but the proof is then more difficult than the one we are about

to give.

Proof

Let γ be a parametrization of a convex simple closed curve in R2, and let ℓ be

its length. Assume for a contradiction that γ has fewer than four vertices. We

show first that there is a straight line L that divides γ into two segments, in

one of which κ̇s > 0 and in the other κ̇s ≤ 0 (or possibly κ̇s ≥ 0 on one and

κ̇s < 0 on the other). Indeed, κs attains all of its values on the closed interval

[0, ℓ], so κs must attain its maximum and minimum values at some points p

and q of γ. We can assume that p �= q, since otherwise κs would be constant,

γ would be a circle (by Example 2.2.7), and every point of γ would be a vertex.

If p and q were the only vertices of γ, we would have κ̇s > 0 on one of the

segments into which the line through p and q divides γ and κ̇s < 0 on the

other. Suppose now that there is just one more vertex, say r. Then, p, q and

r divide γ into three segments, on each of which either κ̇s > 0 or κ̇s < 0. It

follows that there are two adjacent segments on which κ̇s > 0 or two on which

κ̇s < 0 (except at the point at which the two segments meet). This proves our

assertion.
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P Q

a

Let a be a unit vector perpendicular to L, so that γ ·a > 0 on one side of L

and γ · a < 0 on the other. Then, the quantity κ̇s(γ · a) is either always > 0 or

always < 0, except at the two points in which L intersects the curve. It follows

that
∫

ℓ

0

κ̇s(γ · a) dt �= 0, (3.8)

as this integral is definitely > 0 in the first case and < 0 in the second. But,

using the equation ṅs = −κst (see Exercise 2.2.1), we get

κ̇sγ = (κsγ )̇− κsγ̇ = (κsγ + ns)̇,

so the integrand on the left-hand side of (3.8) is the derivative of (κsγ+ns)·a =

λ, say. Since γ is ℓ-periodic,

γ(t+ ℓ) = γ(t) for all t,

differentiating with respect to t shows that the tangent vector t of γ is also

ℓ-periodic:

t(t+ ℓ) = γ̇(t+ ℓ) = γ̇(t) = t(t).

Rotating by π/2 gives

ns(t+ ℓ) = ns(t),

and hence κs(t + ℓ) = κs(t). It follows that λ(t + ℓ) = λ(t) for all t, so the

integral in (3.8) is equal to

∫ ℓ

0

λ̇(t) dt = λ(ℓ)− λ(0) = 0.

This contradiction proves that γ must have at least four vertices.
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EXERCISES

3.3.1 Show that the ellipse in Example 3.1.2 is convex.

3.3.2 Show that the limaco̧n in Example 1.1.7 has only two vertices (cf.

Example 3.1.3).

3.3.3 Show that a plane curve γ has a vertex at t = t0 if and only if the

evolute ǫ of γ (Exercise 2.2.7) has a singular point at t = t0.



4
Surfaces in three dimensions

In this chapter, we introduce several d i ff e r e nt ways to mathematically formulate

the notion of a surface. Although the simplest of these, that of a surface patch,

is all that is needed for most of the book, it does not describe adequately most

of the objects that we would want to call surfaces. For example, a sphere is

not a surface patch, but it can be described by ‘gluing’ two surface patches

together suitably. The idea behind this gluing procedure is simple enough,

but making it precise turns out to be a little complicated. We have tried to

minimize the trauma by collecting the most demanding proofs in a separate

section (Section 5.6).

4.1 What is a surface?

A surface is a subset of R3 that looks like a piece of R2 in the vicinity of any

given point, just as the surface of the Earth, although actually nearly spherical,

appears to be a flat plane to an observer on the surface who sees only to the

horizon. To make the phrases ‘looks like’ and ‘in the vicinity’ precise, we must

first introduce some preliminary material. We describe this for Rn for any n ≥ 1,

although we shall need it only for n = 1, 2, or 3.

First, a subset U of Rn is called open if, whenever a is a point in U, there

is a positive number ǫ such that every point u ∈ Rn within a distance ǫ of a is

also in U :

a ∈ U and ‖ u− a ‖< ǫ =⇒ u ∈ U.
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For example, the whole of Rn is an open set, as is

Dr(a) = {u ∈ R
n | ‖ u− a ‖< r},

the open bal l with centre a and radius r > 0. (If n = 1, an open ball is called

an open interval; if n = 2 it is called an open disc.) However,

Dr(a) = {u ∈ R
n | ‖ u− a ‖≤ r}

is not open because however small the positive number ǫ is, there is a point

within a distance ǫ of the point (a1 + r, a2, . . . , an) ∈ Dr(a) (say) that is not in

Dr(a) (for example, the point (a1 + r + ǫ
2 , a2, . . . , an)).

Next, if X and Y are subsets of Rm and Rn, respectively, a map f : X → Y

is said to be continuous at a point a ∈ X if points in X near a are mapped by

f to points in Y near f(a). More precisely, f is continuous at a if, given any

number ǫ > 0, there is a number δ > 0 such that

u ∈ X and ‖ u− a ‖< δ =⇒‖ f(u)− f(a) ‖< ǫ.

Then f is said to be continuous if it is continuous at every point of X .

Composites of continuous maps are continuous.

In view of the definition of an open set, this is equivalent to the following:

f is continuous if and only if, for any open set V of Rn, there is an open set U

of Rm such that U ∩X = {x ∈ X | f(x) ∈ V }.

If f : X → Y is continuous and bijective, and if its inverse map f−1 : Y → X

is also continuous, then f is called a homeomorphism and X and Y are said to

be homeomorphic.

We are now in a position to make our first attempt at defining the notion

of a surface in R3.

Definition 4.1.1

A subset S of R3 is a surface if, for every point p ∈ S, there is an open set U

in R2 and an open set W in R3 containing p such that S ∩W is homeomorphic

to U . A subset of a surface S of the form S ∩W , where W is an open subset

of R3, is called an open subset of S. A homeomorphism σ : U → S ∩W as in

this definition is called a surface patch or parametrization of the open subset

S ∩W of S. A collection of such surface patches whose images cover the whole

of S is called an atlas of S.

Example 4.1.2

Every plane in R3 is a surface with an atlas consisting of a single surface patch.

In fact, let a be a point on the plane, and let p and q be two unit vectors that



4.1 What is a surface? 69

are parallel to the plane and perpendicular to each other. If v is any point of

the plane, v− a is parallel to the plane, and so

v− a = up+ vq

for some scalars u and v. Thus, the desired surface patch is

σ(u, v) = a+ up+ vq,

and its inverse map is

σ−1(v) = ((v − a) · p, (v− a) · q).

These formulas make it clear that σ and σ−1 are continuous, and hence that

σ is a homeomorphism. (We shall not verify this in detail.)

The following example shows why we have to consider surfaces, and not

just surface patches.

Example 4.1.3

A circular cylinder is the set of points of R3 that are at a fixed distance (the

radius of the cylinder) from a fixed straight line (its axis). For example, the

circular cylinder of radius 1 and axis the z-axis, which we shall call the unit

cylinder, is

S = {(x, y, z) ∈ R
3 |x2 + y2 = 1}.

The simplest parametrization of S is

σ(u, v) = (cosu, sinu, v).

Clearly, σ(u, v) ∈ S for all (u, v) ∈ R2, and every point of S is of this form.

Moreover, σ is continuous. However, σ is not injective, and so is not a home-

omorphism, because σ(u, v) = σ(u+ 2π, v) for all (u, v). To get an injective

map we can restrict u to lie in an interval of length ≤ 2π, say 0 ≤ u < 2π.

However, although the restriction σ|V of σ to

V = {(u, v) ∈ R
2 | 0 ≤ u < 2π}

is injective, V is not an open subset of R2 and so σ|V is not a surface patch.

The largest open subset of R2 contained in V is

U = {(u, v) ∈ R
2 | 0 < u < 2π},

and the restriction σ|U of σ to U is a surface patch. However, σ|U does not

cover the whole of S, but only the open subset obtained by removing the line

x = 1, y = 0 from S.
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To get an atlas for S we therefore need at least one more surface patch. We

can take σ|Ũ , where

Ũ = {(u, v) ∈ R
2 | − π < u < π};

this covers the open subset of S obtained by removing the line x = −1, y = 0.

Every point of S is in the image of at least one of the surface patches σ|U ,σ|Ũ ,

so {σ|U ,σ|Ũ} is an atlas for S, and S is a surface.

Example 4.1.4

A sphere is the set of points of R3 that are a fixed distance (the radius of the

sphere) from a fixed point (its centre). For example, the sphere of radius 1 and

centre the origin, called the unit sphere, is

S2 = {(x, y, z) ∈ R
3 | x2 + y2 + z2 = 1}.

The most popular parametrization of S2 is that given by latitude θ and longi-

tude ϕ: if p is a point of the sphere, the line through p parallel to the z-axis

intersects the xy-plane at a point q, say; then, θ is the angle between q and p

and ϕ is the angle between q and the positive x-axis. The circles on the sphere

corresponding to a constant value of θ are called parallels; those corresponding

to a constant value of ϕ are called meridians.
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To obtain an explicit formula for this parametrization, we must express p

in terms of the angles θ and ϕ. From the right-angled triangle with vertices 0,

p and q, we see that the z-component of p is sin θ. The x- and y-components

can be found from the right-angled triangle in the xy-plane with vertices 0, q

and r, where r is the foot of the perpendicular from q to the x-axis. The length

of the hypotenuse of this triangle is ‖ q ‖= cos θ, so the x- and y-components

of p are

‖ q ‖ cosϕ = cos θ cosϕ and ‖ q ‖ sinϕ = cos θ sinϕ,

respectively. Putting all these together gives

p = (cos θ cosϕ, cos θ sinϕ, sin θ).

Denote the right-hand side of this equation by σ(θ, ϕ); this is the latitude–

longitude parametrization of S2.

As in the case of the cylinder, σ is not injective since (for example) σ(θ, ϕ) =

σ(θ, ϕ + 2π). In fact, a little thought shows that to cover the whole sphere, it

is sufficient to take

−
π

2
≤ θ ≤

π

2
, 0 ≤ ϕ ≤ 2π.
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However, the set of points (θ, ϕ) satisfying these inequalities is not an open

subset of R2. The largest open set consistent with the above inequalities is

U =
{

(θ, ϕ)
∣∣∣ − π

2
< θ <

π

2
, 0 < ϕ < 2π

}
;

however, the image of σ|U is not the whole of the sphere, but the open subset

obtained by removing the semicircle C consisting of the points of the sphere of

the form (x, 0, z) with x ≥ 0.

To show that the sphere is a surface, we must therefore produce at least

one more surface patch covering the part of the sphere omitted by σ. One

possibility is the patch σ̃ obtained by first rotating σ by π about the z-axis

and then by π/2 about the x-axis. Explicitly, σ̃ : U → R3 is given by

σ̃(θ, ϕ) = (− cos θ cosϕ,− sin θ,− cos θ sinϕ)

(the open set U is the same as for σ). The image of σ̃ is the open subset of S2

obtained by removing the semicircle C̃ consisting of the points of the sphere of

the form (x, y, 0) with x ≤ 0.
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It is clear that C and C̃ do not intersect, so the union of the images of σ|U and

σ̃|U is the whole sphere.

Our last example (for the moment) is a subset of R3 that is nearly, but not

quite, a surface.

Example 4.1.5

The circular cone with vertex a point v, axis a straight line ℓ passing through v,

and angle α, where 0 < α < π/2, is the set of points p in R3 such that the

straight line through v and p makes an angle α with the line ℓ. For example,

if v is the origin, ℓ is the z-axis and α = π/4, the circular cone is

S = {(x, y, z) ∈ R
3 | x2 + y2 = z2}.

To see that this is not a surface, suppose that σ : U → S ∩W is a surface

patch containing the vertex (0, 0, 0) of the cone, and let a ∈ U correspond to

the vertex. We can assume that U is an open ball with centre a, since any

open set U containing a must contain such an open ball. The open set W must

obviously contain a point p in the lower half S− of S where z < 0 and a point

q in the upper half S+ where z > 0; let b and c be the corresponding points

in U . It is clear that there is a curve π in U passing through b and c, but not

passing through a. This is mapped by σ into the curve γ = σ ◦π lying entirely

in S, passing through p and q, and not passing through the vertex. (It is true

that γ will, in general, only be continuous, and not smooth, but this does not

affect the argument.) This is clearly impossible. (Readers familiar with point

set topology will be able to make this heuristic argument rigorous.)
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If we remove the vertex, however, we do get a surface S−∪S+. It has an atlas

consisting of the two surface patches σ± : U → R3, where U = R2\{(0, 0)},

given by the inverse of projection onto the xy plane:

σ±(u, v) = (u, v,±
√
u2 + v2).

u

¾

¾

Ũ

Ṽ

˜

V

U

As the example of the sphere shows, a point a of a surface S will generally

lie in the image of more than one surface patch. In general, suppose then that

σ : U → S ∩W and σ̃ : Ũ → S ∩ W̃ are two patches such that a ∈ S ∩W ∩ W̃ .

Since σ and σ̃ are homeomorphisms, σ−1(S ∩W ∩ W̃ ) and σ̃−1(S ∩W ∩ W̃ )

are open sets V ⊆ U and Ṽ ⊆ Ũ , respectively. The composite homeomorphism

σ−1 ◦ σ̃ : Ṽ → V is called the transition map from σ to σ̃. If we denote this

map by Φ, we have

σ̃(ũ, ṽ) = σ(Φ(ũ, ṽ))

for all (ũ, ṽ) ∈ Ṽ .
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EXERCISES

4.1.1 Show that any open disc in the xy-plane is a surface.

4.1.2 Define surface patches σx
± : U → R3 for S2 by solving the equation

x2 + y2 + z2 = 1 for x in terms of y and z:

σx
± (u, v) = (±

√
1− u2 − v2, u, v),

defined on the open set U = {(u, v) ∈ R2 | u2 + v2 < 1}. Define

σ
y
± and σz

± similarly (with the same U) by solving for y and z,

respectively. Show that these six patches give S2 the structure of a

surface.

4.1.3 The hyperboloid of one sheet is

S = {(x, y, z) ∈ R
3 | x2 + y2 − z2 = 1}.

Show that, for every θ, the straight line

(x− z) cos θ = (1 − y) sin θ, (x+ z) sin θ = (1 + y) cos θ

is contained in S, and that every point of the hyperboloid lies on

one of these lines. Deduce that S can be covered by a single surface

patch, and hence is a surface. (Compare the case of the cylinder in

Example 4.1.3.)
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Find a second family of straight lines on S, and show that no two

lines of the same family intersect, while every line of the first family

intersects every line of the second family with one exception. One

says that the surface S is doubly ruled.

4.1.4 Show that the unit cylinder can be covered by a single surface patch,

but that the unit sphere cannot. (The second part requires some

point set topology.)

4.1.5 Show that every open subset of a surface is a surface.

4.2 Smooth surfaces

In Differential Geometry we use calculus to analyse surfaces (and other geomet-

ric objects). We must be able to make sense of the statement that a function

on a surface is differentiable, for example. For this, we have to consider surfaces

with some extra structure.

First, if U is an open subset of Rm, we say that a map f : U → Rn is smooth

if each of the n components of f, which are functions U → R, have continuous

partial derivatives of all orders. The partial derivatives of f are then computed

componentwise. For example, if m = 2 and n = 3, and

f(u, v) = (f1(u, v), f2(u, v), f3(u, v)),

then
∂f

∂u
=

(
∂f1
∂u

,
∂f2
∂u

,
∂f3
∂u

)
,

∂f

∂v
=

(
∂f1
∂v

,
∂f2
∂v

,
∂f3
∂v

)
,
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and similarly for higher derivatives. We often use the following abbreviations:

∂f

∂u
= fu,

∂f

∂v
= fv,

∂2f

∂u2
= fuu,

∂2f

∂u∂v
= fuv,

∂2f

∂v∂u
= fvu,

∂2f

∂v2
= fvv,

and so on. From advanced calculus we know that fuv = fvu if f is smooth.

It now makes sense to say that a surface patch σ : U → R3 is smooth. But

we shall require one further condition.

Definition 4.2.1

A surface patch σ : U → R3 is called regular if it is smooth and the vectors

σu and σv are linearly independent at all points (u, v) ∈ U . Equivalently, σ

should be smooth and the vector product σu ×σv should be non-zero at every

point of U .

The reason for imposing this condition will appear in Section 4.4.

We can finally define the class of surfaces to be studied in this book.

Definition 4.2.2

If S is a surface, an allowable surface patch for S is a regular surface patch

σ : U → R3 such that σ is a homeomorphism from U to an open subset of S.

A smooth surface is a surface S such that, for any point p ∈ S, there is an

allowable surface patch σ as above such that p ∈ σ(U). A collection A of

allowable surface patches for a surface S such that every point of S is in the

image of at least one patch in A is called an atlas for the smooth surface S.

Example 4.2.3

The plane in Example 4.1.2 is a smooth surface. For

σ(u, v) = a+ up+ vq

is clearly smooth and σu = p and σv = q are linearly independent because p

and q were chosen to be perpendicular unit vectors.

Example 4.2.4

The unit cylinder (Example 4.1.3) is a smooth surface. Indeed,

σ(u, v) = (cos u, sinu, v)
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is clearly smooth and

σu = (− sinu, cosu, 0), σv = (0, 0, 1)

are obviously linearly independent for all (u, v), so σ|U and σ|Ũ are regular

surface patches.

Example 4.2.5

For the unit sphere S2 in Example 4.1.4, it is again clear that σ and σ̃ are

smooth. As for regularity,

σθ = (− sin θ cosϕ,− sin θ sinϕ, cos θ), σϕ = (− cos θ sinϕ, cos θ cosϕ, 0),

σθ × σϕ = (− cos2 θ cosϕ,− cos2 θ sinϕ,− sin θ cos θ)

and hence ‖ σθ × σϕ ‖= | cos θ|. But if (θ, ϕ) ∈ U , then −π/2 < θ < π/2 so

cos θ �= 0. Similarly, one checks that σ̃ is regular.

In Exercise 4.1.2 we gave another family of allowable surface patches cover-

ing the unit sphere S2 (it is easy to check that they are regular – see Exercise

4.2.2). An obvious question is: which of these two atlases should we use to study

the sphere? The answer is that we can use either, or both. The eight patches in

Exercise 4.1.2 and Example 4.1.4 together form a third atlas. In most situations

(although not in all – see Definition 4.5.1), one might as well use the maximal

atlas for a given surface S consisting of all of its allowable surface patches. The

maximal atlas is independent of any arbitrary choices.

Although not at first sight very interesting, the next two results are very

important for what is to follow.

Proposition 4.2.6

The transition maps of a smooth surface are smooth.

The proof of this will be given in Section 5.6. The next result is a kind of

converse.

Proposition 4.2.7

Let U and Ũ be open subsets of R2 and let σ : U → R3 be a regular surface

patch. Let Φ : Ũ → U be a bijective smooth map with smooth inverse map

Φ−1 : U → Ũ . Then, σ̃ = σ ◦ Φ : Ũ → R3 is a regular surface patch.
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Proof

The patch σ̃ is smooth because any composite of smooth maps is smooth. As

for regularity, let (u, v) = Φ(ũ, ṽ). By the chain rule,

σ̃ũ =
∂u

∂ũ
σu +

∂v

∂ũ
σv, σ̃ṽ =

∂u

∂ṽ
σu +

∂v

∂ṽ
σv,

so

σ̃ũ × σ̃ṽ =

(
∂u

∂ũ

∂v

∂ṽ
−

∂u

∂ṽ

∂v

∂ũ

)
σu × σv. (4.1)

The scalar on the right-hand side of this equation is the determinant of the

Jacobian matrix

J(Φ) =

(
∂u
∂ũ

∂v
∂ũ

∂u
∂ṽ

∂v
∂ṽ

)

of Φ. We recall from calculus that, if Ψ and Ψ̃ are two smooth maps between

open sets of R2,

J(Ψ̃ ◦Ψ) = J(Ψ̃)J(Ψ).

(In fact, this is equivalent to the chain rule that expresses the first partial

derivatives of Ψ̃ ◦ Ψ in terms of those of Ψ̃ and Ψ.) Taking Ψ = Φ and Ψ̃ =

Φ−1, we see that J(Φ−1) = J(Φ)−1. In particular, J(Φ) is invertible, so its

determinant is non-zero and Eq. 4.1 shows that σ̃ is regular.

If regular surface patches σ and σ̃ are related as in this proposition, we

say that σ̃ is a reparametrization of σ, and that Φ is a reparametrization map.

Note that σ is then a reparametrization of σ̃, since σ = σ̃ ◦ Φ−1.

Note also that, if σ : U → S ∩W and σ̃ : Ũ → S ∩ W̃ are two allowable

surface patches of a smooth surface S, and if V ⊆ U and Ṽ ⊆ Ũ are the open

subsets such that σ(V ) = σ̃(Ṽ ) = S ∩W ∩ W̃ , then Φ = σ−1 ◦ σ̃ : Ṽ → V is

bijective, smooth and has a smooth inverse by Proposition 4.2.6. Thus, σ̃ is a

reparametrization of σ where they are both defined.

These observations give rise to a very important principle that we shall use

throughout the book. The principle is that we can define a property of any

smooth surface provided we can define it for any regular surface patch in such

a way that it is unchanged when the patch is reparametrized. We shall give an

important application of this principle in the next section.

For the rest of this book, by a surface we shall mean

a smooth surface S, and by a surface patch for S

we shall mean an allowable surface patch for S.
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Unless we indicate otherwise, we shall also assume that all surfaces we

consider are connected, which means that any two points of S can be joined

by a curve lying entirely in S. This is not a serious restriction, for it is not

difficult to prove that any surface S is a disjoint union of connected surfaces,

each of which is an open subset of S, so S can be studied by studying each

of its connected parts separately (see Exercise 4.2.9). All the surfaces we have

encountered so far are connected except the double cone of Example 4.1.5,

which breaks into the union of two disjoint half cones S± when the vertex is

removed, as it must be to have a surface.

EXERCISES

4.2.1 Show that, if f(x, y) is a smooth function, its graph

{(x, y, z) ∈ R
3 | z = f(x, y)}

is a smooth surface with atlas consisting of the single regular surface

patch
σ(u, v) = (u, v, f(u, v)).

In fact, every surface is ”locally” of this type – see Exercise 5.6.4.

4.2.2 Verify that the six surface patches for S2 in Exercise 4.1.2 are regular.

Calculate the transition maps between them and verify that these

maps are smooth.

4.2.3 Which of the following are regular surface patches (in each case,

u, v ∈ R):

(i) σ(u, v) = (u, v, uv).

(ii) σ(u, v) = (u, v2, v3).

(iii) σ(u, v) = (u + u2, v, v2)?

4.2.4 Show that the ellipsoid

x2

p2
+

y2

q2
+

z2

r2
= 1,

where p, q and r are non-zero constants, is a smooth surface.

4.2.5 A torus is obtained by rotating a circle C in a plane Π around a

straight line l in Π that does not intersect C. Take Π to be the xz-

plane, l to be the z-axis, a > 0 the distance of the centre of C from

l, and b < a the radius of C. Show that the torus is a smooth surface

with parametrization

σ(θ, ϕ) = ((a+ b cos θ) cosϕ, (a+ b cos θ) sinϕ, b sin θ).
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4.2.6 A helicoid is the surface swept out by an aeroplane propeller, when

both the aeroplane and its propeller move at constant speed (see the

picture below). If the aeroplane is flying along the z-axis, show that

the helicoid can be parametrized as

σ(u, v) = (v cosu, v sinu, λu),

where λ is a constant. Show that the cotangent of the angle that

the standard unit normal of σ at a point p makes with the z-axis is

proportional to the distance of p from the z-axis.

4.2.7 Let γ be a unit-speed curve in R3 with nowhere vanishing curvature.

The tube of radius a > 0 around γ is the surface parametrized by

σ(s, θ) = γ(s) + a(n(s) cos θ + b(s) sin θ),

where n is the principal normal of γ and b is its binormal. Give a

geometrical description of this surface. Prove that σ is regular if the

curvature κ of γ is less than a−1 everywhere.
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Note that, even if σ is regular, the surface σ will have self-

intersections if the curve γ comes within a distance 2a of itself.

This illustrates the fact that regularity is a local property: if (s, θ)

is restricted to lie in a sufficiently small open subset U of R2,

σ : U → R3 will be smooth and injective (so there will be no

self-intersections) – see Exercise 5.6.3. We shall see other instances

of this later (for example, Example 12.2.5).

The tube around a circular helix

4.2.8 Show that translations and invertible linear transformations of R3

take smooth surfaces to smooth surfaces.

4.2.9 Show that every open subset of a smooth surface is a smooth surface.

4.3 Smooth maps

We want to define the notion of a smooth map f : S1 → S2, where S1 and S2

are smooth surfaces. It is not obvious how to do this, because so far we only

know how to define smooth maps between open subsets of Euclidean spaces.

In view of the principle stated at the end of the preceding section, we can

assume that S1 and S2 are covered by single surface patches σ1 : U1 → R3

and σ2 : U2 → R3 provided we verify that the definition we give is unaffected
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by a reparametrization of σ1 and σ2. Since σ1 and σ2 are bijective, any map

f : S1 → S2 gives rise to the map σ−1
2 ◦ f ◦ σ1 : U1 → U2, and we say that

f is smooth if this map is smooth (we already know what it means for a map

between open subsets of R2 to be smooth). Now suppose that σ̃1 : Ũ1 → R3

and σ̃2 : Ũ2 → R3 are reparametrizations of σ1 and σ2, with reparametrization

maps Φ1 : Ũ1 → U1 and Φ2 : Ũ2 → U2, respectively. We have to show that the

corresponding map σ̃−1
2 ◦ f ◦ σ̃1 : Ũ1 → Ũ2 is smooth if σ−1

2 ◦ f ◦σ1 : U1 → U2

is smooth. But this is true, since

σ̃−1
2 ◦ f ◦ σ̃1 = σ̃−1

2 ◦ (σ2 ◦ σ
−1
2 ) ◦ f ◦ (σ1 ◦ σ

−1
1 ) ◦ σ̃1

= (σ̃−1
2 ◦ σ2) ◦ (σ

−1
2 ◦ f ◦ σ1) ◦ (σ

−1
1 ◦ σ̃1)

= Φ−1
2 ◦ (σ−1

2 ◦ f ◦ σ1) ◦ Φ1,

and Φ1 and Φ−1
2 are smooth maps (between open subsets of R2). The reader

should check that composites of smooth maps between surfaces are smooth.

We shall be especially interested in smooth maps f : S1 → S2, which are

bijective and whose inverse map f−1 : S2 → S1 is smooth. Such maps are

called diffeomorphisms, and S1 and S2 are said to be diffeomorphic if there is

a diffeomorphism between them. The following observation will be useful.

Proposition 4.3.1

Let f : S1 → S2 be a diffeomorphism. If σ1 is an allowable surface patch on

S1, then f ◦ σ1 is an allowable surface patch on S2.

Proof

We can assume that S1 and S2 are covered by single allowable patches

σ1 : U1 → R3 and σ2 : U2 → R3, respectively. Since f is a diffeomorphism,

f(σ1(u, v)) = σ2(F (u, v)), where F : U1 → U2 is bijective, smooth and F−1 is

smooth. The result now follows from Proposition 4.2.6.

It will actually be useful to consider smooth maps which satisfy a condition

slightly weaker than being a diffeomorphism. A smooth map f : S1 → S2 be-

tween smooth surfaces is called a local diffeomorphism if, for any point p ∈ S1,

there is an open subset O of S1 such that f(O) is an open subset of S2 and

f |O : O → f(O) is a diffeomorphism (note that open subsets of surfaces are

surfaces – see Exercise 4.2.9). It is obvious that every diffeomorphism is a local

diffeomorphism (take O = S1). Moreover, Proposition 4.3.1 holds if f is a lo-

cal diffeomorphism, provided that the restriction of f to the image of σ1 is

injective.
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Example 4.3.2

We consider the map from the yz-plane onto the unit cylinder S, which wraps

each line parallel to the y-axis around the ‘waist’ of the cylinder at height z

above the xy-plane. This map is given by

f(0, y, z) = (cos y, sin y, z).

Clearly, f is not a diffeomorphism because it is not injective – the plane

wraps around S infinitely many times. To see that f is a local diffeomorphism,

we parametrize the yz-plane in the obvious way by the single surface patch

π(u, v) = (0, u, v), and use the atlas {σ|U ,σ|Ũ} of S in Example 4.1.3. Let p

be any point in the yz-plane, say (0, a, b). If a is not an even multiple of 2π,

there is an integer n such that 2nπ < a < 2(n+ 1)π and we have

f(π(u, v)) = σ(u− 2nπ, v) if 2nπ < u < 2(n+ 1)π,

showing that f is a diffeomorphism from the open subset

O = {(0, y, z) | 2nπ < y < 2(n+ 1)π}

of the plane to the open subset

f(O) = {(x, y, z) ∈ S |x �= 1}

of S. If a is not an odd multiple of π, a similar argument works with σ|U
replaced by σ|Ũ (we leave the details to the reader). Since a cannot both be

an even and an odd multiple of π, we have shown that for all points p of

the plane, there is an open subset O of the plane containing p that f maps

diffeomorphically onto an open subset of S.
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EXERCISES

4.3.1 If S is a smooth surface, define the notion of a smooth function

S → R. Show that, if S is a smooth surface, each component of the

inclusion map S → R3 is a smooth function S → R.

4.3.2 Let S be the half-cone x2+y2 = z2, z > 0 (see Example 4.1.5). Define

a map f from the half-plane {(0, y, z) | y > 0} to S by f(0, y, z) =

(y cos z, y sin z, y). Show that f is a local diffeomorphism but not a

diffeomorphism.

4.4 Tangents and derivatives

A natural way to study a surface S is via the (smooth) curves γ that lie in S.

This enables us to define the notion of a tangent vector to a surface.

Definition 4.4.1

A tangent vector to a surface S at a point p ∈ S is the tangent vector at p of

a curve in S passing through p. The tangent space TpS of S at p is the set of

all tangent vectors to S at p.

To understand the tangent space TpS, choose a surface patch σ : U → R3

of S such that p is in the image of σ, say σ(u0, v0) = p. If a curve γ lies in S

and passes through p when t = t0, say, there are functions u(t) and v(t) such

that

γ(t) = σ(u(t), v(t)) (4.2)

for all values of t close to t0, and u(t0) = u0, v(t0) = v0. The functions u and v

are necessarily smooth (this will be proved in Section 5.6); conversely, it is

obvious that if t → (u(t), v(t)) is smooth, then Eq. 4.2 defines a curve lying

in S.

Proposition 4.4.2

Let σ : U → R3 be a patch of a surface S containing a point p ∈ S, and let

(u, v) be coordinates in U . The tangent space to S at p is the vector subspace

of R3 spanned by the vectors σu and σv (the derivatives are evaluated at the

point (u0, v0) ∈ U such that σ(u0, v0) = p).
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Proof

Let γ be a smooth curve in S, say

γ(t) = σ(u(t), v(t)).

Denoting d/dt by a dot, we have, by the chain rule,

γ̇ = σuu̇+ σv v̇.

Thus, γ̇ is a linear combination of σu and σv. (Perhaps it is worth spelling out

what this last equation means: the vectors σu and σv are smooth functions of

u and v; in these formulas one replaces u and v by the functions u(t) and v(t);

then the right-hand side of the equation becomes a function of t only, and the

equation says that this function is equal to dγ/dt.)

Conversely, any vector in the vector subspace of R3 spanned by σu and σv

is of the form λσu + µσv for some scalars λ and µ. Define

γ(t) = σ(u0 + λt, v0 + µt).

Then, γ is a smooth curve in S and at t = 0, i.e., at the point p ∈ S, we have

γ̇ = λσu + µσv.

This shows that every vector in the span of σu and σv is the tangent vector at

p of some curve in S.

Since σ is assumed to be regular, σu and σv are linearly independent so the

tangent space is two-dimensional, and will be called the tangent plane from now

on. Note that Definition 4.4.1 shows that the tangent plane is independent of

the choice of patch containing p, even though this is not immediately obvious

from Proposition 4.4.2 (see Exercise 4.4.2). Note also that the vectors σu and

σv that form a basis of the tangent plane at some point σ(u0, v0) of the surface

are the tangent vectors of the parameter curves on the surface, i.e., the curves

u → σ(u, v0) and v → σ(u0, v) (we shall sometimes describe these curves as

‘the parameter curves u = u0 and v = v0’).

As a first application of the tangent plane to a smooth surface, we shall

explain what is meant by the derivative of a smooth map between surfaces.

Suppose then that f : S → S̃ is such a map. The derivative of f at a point

p ∈ S should measure how the point f(p) ∈ S̃ changes when p moves to a

nearby point q, say, of S. If the points p and q are very close together, the

straight line through them should be nearly tangent to S at p. So we should

expect that the derivative of f at p associates to any tangent vector to S at p

a tangent vector to S̃ at f(p), in other words, the derivative of f at p should

be a map Dpf : TpS → Tf(p)S̃.
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To give a precise definition of Dpf , let w ∈ TpS be a tangent vector to S at

p. By definition, w is the tangent vector at p of a curve γ in S passing through

p, say w = γ̇(t0). Then, γ̃ = f ◦ γ is a curve in S̃ passing through f(p) when

t = t0, so w̃ = ˙̃γ(t0) ∈ Tf(p)S̃.

Definition 4.4.3

With the above notation, the derivative Dpf of f at the point p ∈ S is the map

Dpf : TpS → Tf(p)S̃ such that Dpf(w) = w̃ for any tangent vector w ∈ TpS.

The first thing we must do now is to show that this definition makes sense,

i.e., that Dpf(w) depends only on f , p, and w: there are (infinitely) many

curves γ with the correct tangent vector w at p and a priori Dpf(w) could

depend on which curve is chosen.

Let σ : U → R3 be a surface patch of S containing p, say p = σ(u0, v0),

and let α, β be the smooth functions on U such that

f(σ(u, v)) = σ̃(α(u, v), β(u, v)).

Let w = λσu + µσv be the tangent vector at p of a curve γ(t) = σ(u(t), v(t)),

where u and v are smooth functions such that u̇(t0) = λ, v̇(t0) = µ. Since the

corresponding curve on S̃ is γ̃(t) = σ̃(ũ(t), ṽ(t)), where ũ(t) = α(u(t), v(t)) and

ṽ(t) = β(u(t), v(t)), we have

Dpf(w) = ˙̃uσ̃ũ + ˙̃vσ̃ṽ = (u̇αu + v̇αv)σ̃ũ + (u̇βu + v̇βv)σ̃ṽ,

the derivatives of u and v being evaluated at t0. Thus,

Dpf(w) = (λαu + µαv)σ̃ũ + (λβu + µβv)σ̃ṽ. (4.3)

The right-hand side depends only on p, f , λ and µ, i.e., on p, f and w, as we

want.

Equation 4.3 also establishes the following proposition.

Proposition 4.4.4

If f : S → S̃ is a smooth map between surfaces and p ∈ S, the derivative

Dpf : TpS → Tf(p)S̃ is a linear map.

In fact, Eq. 4.3 shows that the matrix of the linear map Dpf with respect

to the basis {σu,σv} of Tpf and the basis {σ̃ũ, σ̃ṽ} of Tf(p)S̃ is the Jacobian

matrix (
αu αv

βu βv

)

of the smooth map (u, v) → (α(u, v), β(u, v)).
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Proposition 4.4.5

(i) If S is a surface and p ∈ S, the derivative at p of the identity map S → S

is the identity map TpS → TpS.

(ii) If S1,S2 and S3 are surfaces and f1 : S1 → S2 and f2 : S2 → S3 are

smooth maps, then for all p ∈ S1,

Dp(f2 ◦ f1) = Df1(p)f2 ◦Dpf1.

(iii) If f : S1 → S2 is a diffeomorphism, then for all p ∈ S1 the linear map

Dpf : TpS1 → Tf(p)S2 is invertible.

Proof

Part (i) is obvious. For (ii), let w ∈ TpS1 be the tangent vector at p of a curve

γ1 on S1. Then, γ2 = f1 ◦ γ1 is a curve on S2 with tangent vector Dpf1(w)

at f1(p), so γ3 = f2 ◦ γ2 = (f2 ◦ f1) ◦ γ1 is a curve on S3 with tangent vector

Df1(p)f2(Dpf1(w)) at f2(f1(p)). But the tangent vector of γ3 at p is also

Dp(f2 ◦ f1)(w).

Finally, for (iii) let g : S2 → S1 be the inverse map of f , so that g ◦ f and

f ◦ g are the identity maps S1 → S1 and S2 → S2, respectively. Parts (i) and

(ii) show that Df(p)g is the inverse of the linear map Dpf .

We can now give a simple criterion for a smooth map to be a local diffeo-

morphism.

Proposition 4.4.6

Let S and S̃ be surfaces and let f : S → S̃ be a smooth map. Then, f is a local

diffeomorphism if and only if, for all p ∈ S, the linear mapDpf : TpS → Tf(p)S̃

is invertible.

Proof

Suppose first that f is a local diffeomorphism and let p ∈ S. Then, there is

an open subset O of S containing p such that f(O) is an open subset of S̃

and f |O : O → f(O) is a diffeomorphism. By Proposition 4.4.5(iii), Dpf is

invertible (note that it is obvious that TpS = TpO).

The proof of the ’if’ part requires the inverse function theorem and will be

given in Section 5.6.
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EXERCISES

4.4.1 Find the equation of the tangent plane of each of the following sur-

face patches at the indicated points:

(i) σ(u, v) = (u, v, u2 − v2), (1, 1, 0).

(ii) σ(r, θ) = (r cosh θ, r sinh θ, r2), (1, 0, 1).

4.4.2 Show that, if σ(u, v) is a surface patch, the set of linear combinations

of σu and σv is unchanged when σ is reparametrized.

4.4.3 Let S be a surface, let p ∈ S and let F : R3 → R be a smooth

function. Let ∇S F be the perpendicular projection of the gradient

∇F = (Fx, Fy , Fz) of F onto TpS. Show that, if γ is any curve on

S passing through p when t = t0, say,

(∇S F ) · γ̇(t0) =
d

dt

∣∣∣∣
t=t0

F (γ(t)).

Deduce that ∇S F = 0 if the restriction of F to S has a local maxi-

mum or a local minimum at p.

4.4.4 Let f : S1 → S2 be a local diffeomorphism and let γ be a regular

curve on S1. Show that f ◦ γ is a regular curve on S2.

4.5 Normals and orientability

Since the tangent plane TpS of a surface S at a point p ∈ S passes through the

origin of R3, it is completely determined by giving a unit vector perpendicular

to it, called a unit normal to S at p. There are, of course, two such vectors, but

Proposition 4.4.2 shows that choosing a surface patch σ : U → R3 containing

p leads to a definite choice, namely

Nσ =
σu × σv

‖ σu × σv ‖
(4.4)

(with the derivatives evaluated at the point of U corresponding to p), for this

is clearly a unit vector perpendicular to every linear combination of σu and

σv. This is called the standard unit normal of the surface patch σ at p. Unlike

the tangent plane, however, Nσ is not quite independent of the choice of patch

σ containing p. In fact, if σ̃ : Ũ → R3 is another surface patch in the atlas of

S containing p, we showed in the proof of Proposition 4.2.7 that

σ̃ũ × σ̃ṽ = det(J(Φ))σu × σv,
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where J(Φ) is the Jacobian matrix of the transition map Φ from σ to σ̃. So

the standard unit normal of σ̃ is

Nσ̃ =
σ̃ũ × σ̃ṽ

‖ σ̃ũ × σ̃ṽ ‖
= ± σu × σv

‖ σu × σv ‖
= ±Nσ,

where the sign is that of the determinant of J(Φ). This leads to the following

definition.

Definition 4.5.1

A surface S is orientable if there exists an atlas A for S with the property

that, if Φ is the transition map between any two surface patches in A, then

det(J(Φ)) > 0 where Φ is defined.

The preceding discussion gives the following proposition.

Proposition 4.5.2

Let S be an orientable surface equipped with an atlas A as in Definition 4.5.1.

Then, there is a smooth choice of unit normal at any point of S: take the

standard unit normal of any surface patch in A.

An oriented surface is a surface S together with a smooth choice of unit

normal N at each point, i.e., a smooth map N : S → R3 (meaning that each

of the three components of N is a smooth function S → R) such that, for all

p ∈ S, N(p) is a unit vector perpendicular to TpS. Any oriented surface is

orientable ! To see this, start with the maximal atlas of S and retain a patch

σ(u, v) if σu × σv is a positive multiple of N at all points in the image of σ,

otherwise discard it. The patches that remain form an atlas A satisfying the

condition in Definition 4.5.1. We leave the details of this to the reader (the

argument is similar to that used in the next example). From now onwards,

whenever we are dealing with an oriented surface S, we shall only use surface

patches for S whose standard unit normal is the same as the chosen normal

of S.

Most of the surfaces we shall discuss are orientable. Here is one that is not.

Example 4.5.3

The Möbius band is the surface obtained by rotating a straight line segment l

around its midpoint p at the same time as p moves around a circle C, in such a

way that as p moves once around C, l makes a half-turn about p. If we take C
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to be the circle x2 + y2 = 1 in the xy-plane, and l to be a segment of length 1

that is initially parallel to the z-axis with its midpoint p at (1, 0, 0), then after

p has rotated by an angle θ around the z-axis, l should have rotated by θ/2

around p in the plane containing p and the z-axis. The point of l initially at

(1, 0, t) is then at the point

σ(t, θ) =

((
1− t sin

θ

2

)
cos θ,

(
1− t sin

θ

2

)
sin θ, t cos

θ

2

)
.

We take the domain of definition of σ to be

U = {(t, θ) ∈ R
2 | −1/2 < t < 1/2, 0 < θ < 2π}.

We can define a second patch σ̃ by the same formula as σ but with domain

of definition Ũ = {(t, θ) ∈ R2 | −1/2 < t < 1/2, −π < θ < π}. It can be

checked that these two patches form an atlas for the Möbius band consisting

of regular surface patches, making the Möbius band into a smooth surface S

(see Exercise 4.5.1).

We compute the standard unit normal Nσ at points on the median circle

(where t = 0). At such points, we have

σt =

(
− sin

θ

2
cos θ,− sin

θ

2
sin θ, cos

θ

2

)
, σθ = (− sin θ, cos θ, 0),

so

σt × σθ =

(
− cos θ cos

θ

2
,− sin θ cos

θ

2
,− sin

θ

2

)
.

This is a unit vector, so it is equal to Nσ.

If the Möbius band was orientable, there would be a well-defined unit normal

N defined at every point of S and varying smoothly over S. At a point σ(0, θ)

on the median circle, we would have

N = λ(θ)Nσ,

where λ : (0, 2π) → R is smooth and λ(θ) = ±1 for all θ. It follows that either

λ(θ) = +1 for all θ ∈ (0, 2π), or λ(θ) = −1 for all θ ∈ (0, 2π). Replacing N by
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−N if necessary, we can assume that 
 = 1. At the point σ(0, 0) = σ(0, 2π),

we would have (since N is smooth)

N = lim
θ↓0

Nσ = (−1, 0, 0) and also N = lim
θ↑2π

Nσ = (1, 0, 0).

This contradiction shows that the Möbius band is not orientable.

If a surface S is oriented, it is possible to give a sign to the angle between

two tangent vectors at a point of S. This will be important on a number of

occasions later in this book.

Let p ∈ S and let N be the chosen unit normal at p. A rotation in the

tangent plane TpS is said to be in the positive sense, or anticlockwise, if rotation

in this sense of a right-handed screw held perpendicular to TpS would cause it

to advance in the direction of N. Put another way, the choice of N enables us

to distinguish the two ‘sides’ of TpS: the ‘positive’ side is the half-space into

which N points. Then, if we view TpS from a point on the positive side, a

positive rotation in TpS would be seen as anticlockwise in the usual sense.

TpS

N

If v and w are non-zero vectors in TpS, the oriented angle (which we shall

sometimes just call the angle) between v and w is the angle through which v

must be rotated in the positive sense in order for the resulting vector to be a

positive scalar multiple of w . We shall denote this angle by ̂v w . Note that

̂w v = −̂v w ,

and that the sign of ̂v w will change if we change the choice of unit normal to

TpS. Note also that ̂v w is determined only up to the addition of an integer

multiple of 2π.

Example 4.5.4

It is clear that at a point p ∈ S2, the tangent plane is perpendicular to p.

Since p is a unit vector, the two unit normals at p are p, the ‘outward’ normal,
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and −p, the ‘inward’ normal. There are two smooth choices of unit normal on

S2: either always inwards or always outwards.

For example, the reader should check that, if we take the inward normal

and if p is the point (1, 0, 0) on the equator, the oriented angle between the

tangent vectors v = (0, 1, 0) and w = (0, 0, 1) is v̂w = −π/2 (or 3π/2, 7π/2,

etc.). If we used the outward pointing normal instead, this oriented angle would

change sign.

EXERCISES

4.5.1 Calculate the transition map Φ between the two surface patches for

the Möbius band in Example 4.5.3. Show that it is defined on the

union of two disjoint rectangles in R2, and that the determinant of

the Jacobian matrix of Φ is equal to +1 on one of the rectangles and

to −1 on the other.

4.5.2 Suppose that two smooth surfaces S and S̃ are diffeomorphic and

that S is orientable. Prove that S̃ is orientable.



5
Examples of surfaces

In this chapter we describe some of the simplest classes of surfaces. Others will

be introduced later in the book.

5.1 Level surfaces

As we have already seen (Examples 4.1.3–5 and Exercise 4.1.3), surfaces are

often given to us as level surfaces

{(x, y, z) ∈ R
3 | f(x, y, z) = 0},

where f is a smooth function. In those examples, we constructed atlases by

fairly ad hoc methods. The following result gives general conditions under which

a level surface is a smooth surface. In fact, it deals with a slightly more general

situation in which different regions of a surface may be defined by different

functions.

Theorem 5.1.1

Let S be a subset of R3 with the following property: for each point p ∈ S, there
is an open subset W of R3 containing p and a smooth function f : W → R

such that

(i) S ∩W = {(x, y, z) ∈ W | f(x, y, z) = 0};

Andrew Pressley, Elementary Differential Geometry: Second Edition, 95
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(ii) The gradient ∇f = (fx, fy, fz) of f does not vanish at p.

Then, S is a smooth surface.

We postpone the proof to Section 5.6.

Example 5.1.2

For the unit sphere S2, we can take W = R3 and use the single function

f(x, y, z) = x2+y2+z2−1. Then, ∇f = (2x, 2y, 2z) so ‖ ∇f ‖= 2 at all points

of S2. In particular, ∇f is non-zero everywhere on S2. Hence, Theorem 5.1.1

tells us that S2 is a smooth surface.

Example 5.1.3

For the circular cone of Example 4.1.5, f(x, y, z) = x2 + y2 − z2. Hence,

∇f = (2x, 2y,−2z), and this vanishes only at the vertex (0, 0, 0). Theorem 5.1.1

applies with W = {(x, y, z) ∈ R3 | z �= 0}, so the circular cone with the vertex

removed is a smooth surface, as we have already seen.

A large class of level surfaces is studied in the next section.

EXERCISES

5.1.1 Show that the following are smooth surfaces:

(i) x2 + y2 + z4 = 1.

(ii) (x2 + y2 + z2 + a2 − b2)2 = 4a2(x2 + y2), where a > b > 0 are

constants.

Show that the surface in (ii) is, in fact, the torus of Exercise 4.2.5.

5.1.2 Consider the surface S defined by f(x, y, z) = 0, where f is a smooth

function such that ∇f does not vanish at any point of S. Show that

∇f is perpendicular to the tangent plane at every point of S, and
deduce that S is orientable. Suppose now that F : R3 → R is a

smooth function. Show that, if the restriction of F to S has a local

maximum or a local minimum at p then, at p, ∇F = λ∇f for

some scalar λ. (This is called Lagrange’s Method of Undetermined

Multipliers.)

5.1.3 Show that the smallest value of x2+y2+z2 subject to the condition

xyz = 1 is 3, and that the points (x, y, z) that give this minimum

value lie at the vertices of a regular tetrahedron in R3.
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5.2 Quadric surfaces

The simplest level surfaces, namely planes, have Cartesian equations of the

form ax + by + cz = d, where a, b, c, d are constants. From this point of view,

the next simplest surfaces should be those whose Cartesian equations are given

by quadratic expressions in x, y and z.

In this section, we identify any vector v = (x, y, z) ∈ R3 with the column

matrix

⎛
⎝

x

y

z

⎞

⎠, which we also denote by v. Note that, if v,w ∈ R3, vtw is a

1× 1 matrix, i.e., a number, namely the dot product v ·w.

Definition 5.2.1

A quadric is the subset of R3 defined by an equation of the form

vtAv+ btv+ c = 0,

where v = (x, y, z), A is a constant symmetric 3×3 matrix, b ∈ R3 is a constant

vector, and c ∈ R is a constant scalar.

To see this more explicitly, let

A =

⎛

⎝

a1 a4 a6
a4 a2 a5
a6 a5 a3

⎞

⎠ , b = (b1, b2, b3).

Then, the equation of the quadric is

a1x
2 + a2y

2 + a3z
2 + 2a4xy + 2a5yz + 2a6xz + b1x+ b2y + b3z + c = 0. (5.1)

A quadric is not necessarily a surface. For example, the quadric with

equation x2+y2+z2 = 0 is a single point, and that with equation x2+y2 = 0 is

a straight line. A more interesting example is the quadric xy = 0, which is the

union of the two intersecting planes x = 0 and y = 0, and is also not a surface.

(Intuitively, it has a ‘corner’ along the line of intersection of the planes.) The

following proposition shows that to understand all quadrics it is sufficient to

consider quadrics whose equations take on a particularly simple form.

Theorem 5.2.2

By applying a direct isometry of R3, every non-empty quadric (5.1) in which

the coefficients are not all zero can be transformed into one whose Cartesian

equation is one of the following:
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(i) Ellipsoid: x2

p2 + y2

q2 + z2

r2
= 1.

(ii) Hyperboloid of one sheet: x2

p2 + y2

q2
− z2

r2
= 1.

(iii) Hyperboloid of two sheets: z2

r2
− x2

p2 − y2

q2
= 1.
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(iv) Elliptic paraboloid: x2

p2 + y2

q2 = z.

(v) Hyperbolic paraboloid: x2

p2 − y2

q2 = z.

(vi) Quadric cone: x2

p2 + y2

q2 − z2

r2
= 0.
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(vii) Elliptic cylinder: x2

p2 + y2

q2 = 1.

(viii) Hyperbolic cylinder: x2

p2 − y2

q2 = 1.

(ix) Parabolic cylinder: x2

p2 = y.

(x) Plane: x = 0.

(xi) Two parallel planes: x2 = p2.
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(xii) Two intersecting planes: x2

p2 − y2

q2 = 0.

(xiii) Straight line: x2

p2 + y2

q2 = 0.

(xiv) Single point: x2

p2 + y2

q2 + z2

r2
= 0.

In each case, p, q and r are non-zero constants.

Proof

By Theorem A.0.4, there is an orthogonal matrix P such that PAP t is a diag-

onal matrix, say

A′ =

⎛

⎝

a′1 0 0

0 a′2 0

0 0 a′3

⎞

⎠

(P t denotes the transpose of P and I denotes the identity matrix). Then,

det(P ) = ±1, and by replacing P by −P if necessary, we can assume that

det(P ) = 1. The diagonal entries of A′ are the eigenvalues of A, and the rows

of P are the corresponding eigenvectors. Define v′ = (x′, y′, z′), b′ = (b′1, b
′
2, b

′
3),

where
⎛

⎝

x′

y′

z′

⎞

⎠ = P

⎛

⎝

x

y

z

⎞

⎠ ,

⎛

⎝

b′1
b′2
b′3

⎞

⎠ = P

⎛

⎝

b1
b2
b3

⎞

⎠ .

Noting that

⎛

⎝

x

y

z

⎞

⎠ = P t

⎛

⎝

x′

y′

z′

⎞

⎠ ,

⎛

⎝

b1
b2
b3

⎞

⎠ = P t

⎛

⎝

b′1
b′2
b′3

⎞

⎠ ,

the quadric in Definition 5.2.1 becomes

(x′ y′ z′)A′(x′ y′ z′)t + (b′1 b
′
2 b

′
3)(x

′ y′ z′)t + c = 0,

i.e., a′1x
′2 + a′2y

′2 + a′3z
′2 + b′1x

′ + b′2y
′ + b′3z

′ + c = 0.

This new quadric is obtained from the given one by applying the direct isometry

v �→ Pv (see Appendix 1), so we might as well consider the quadric in (5.1),

but assume that a4 = a5 = a6 = 0, i.e.,

a1x
2 + a2y

2 + a3z
2 + b1x+ b2y + b3z + c = 0. (5.2)

Suppose now that, in Eq. 5.2, a1 �= 0. If we define x′ = x + b1/2a1, corre-

sponding to a translation of R3, the equation becomes

a1x
′2 + a2y

2 + a3z
2 + b2y + b3z + c′ = 0,
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where c′ is a constant. In other words, if a1 �= 0, we can assume that b1 = 0,

and similarly for a2 and a3, of course.

If a1, a2 and a3 in Eq. 5.2 are all non-zero, we may therefore reduce to the

form

a1x
2 + a2y

2 + a3z
2 + c = 0.

If c �= 0, we get cases (i), (ii) and (iii), depending on the signs of a1, a2, a3
and c, and if c = 0 we get cases (vi) and (xiv).

If exactly one of a1, a2 and a3 is zero, say a3 = 0, we are reduced to the

form

a1x
2 + a2y

2 + b3z + c = 0. (5.3)

If b3 �= 0, we may define z′ = z+ c/b3. Thus, by a translation (and by dividing

by b3), we are reduced to the case

a1x
2 + a2y

2 + z = 0.

This gives cases (iv) and (v).

If b3 = 0 in Eq. 5.3, we have

a1x
2 + a2y

2 + c = 0.

If c = 0 we get cases (xii) and (xiii). If c �= 0, dividing through by it leads to

cases (vii) and (viii).

Suppose now that a2 = a3 = 0, but a1 �= 0. Then we have

a1x
2 + b2y + b3z + c = 0. (5.4)

If b2 and b3 are not both zero, by applying a rotation in the xz-plane that takes

the y-axis to a line parallel to the vector (b2, b3), we can arrive at the situation

b2 �= 0, b3 = 0, and then by a translation along the y-axis we can arrange that

c = 0. This leads to the equation

a1x
2 + y = 0,

which gives case (ix). If b2 = b3 = 0 in Eq. 5.4, then c = 0 gives case (x) and

c �= 0 gives case (xi).

Finally, if a1 = a2 = a3 = 0, (5.6) is the equation of a plane, so after

applying a Suitable composite of rotations and translations we are in case (x)

again.

Corollary 5.2.3

Every non-empty quadric of types (i)–(x) is a surface (for type (vi) one must

remove the vertex of the cone).
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Proof

This is easily verified using Exercise 4.2.8, Theorem 5.1.1 and the special form

of the equations of quadrics in Theorem 5.2.2.

Example 5.2.4

Consider the quadric

x2 + 2y2 + 6x− 4y + 3z = 7.

Setting x′ = x+ 3, y′ = y − 1 (a translation), we get

x′2 + 2y′2 + 3z = 18.

Setting z′ = z − 6 (another translation) gives

x′2 + 2y′2 + 3z′ = 0.

Finally, setting x′′ = x′, y′′ = −y′, z′′ = −z′ (a rotation by π about the x-axis)

gives
1

3
x′′2 +

2

3
y′′

2
= z′′,

which is an elliptic paraboloid. It can be parametrized by setting x′′ = u, y′′ =

v, z′′ = 1
3u

2+ 2
3v

2. This corresponds to x = u− 3, y = 1− v, z = 6− 1
3u

2− 2
3v

2,

and shows that the given quadric is a smooth surface with an atlas consisting

of the single surface patch

σ(u, v) =

(
u− 3, 1− v, 6−

1

3
u2 −

2

3
v2
)
.

EXERCISES

5.2.1 Write down parametrizations of each of the quadrics in parts (i)–(xi)

of Theorem 5.2.2 (in case (vi) one must remove the origin).

5.2.2 Show that the quadric

x2 + y2 − 2z2 −
2

3
xy + 4z = c

is a hyperboloid of one sheet if c > 2, and a hyperboloid of two

sheets if c < 2. What if c = 2? (This exercise requires a knowledge

of eigenvalues and eigenvectors.)
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5.2.3 Show that, if a quadric contains three points on a straight line, it

contains the whole line. Deduce that, if L1, L2 and L3 are non-

intersecting straight lines in R3, there is a quadric containing all

three lines.

5.2.4 Use the preceding exercise to show that any doubly ruled surface

is (part of) a quadric surface. (A surface is doubly ruled if it is the

union of each of two families of straight lines such that no two lines of

the same family intersect, but every line of the first family intersects

every line of the second family, with at most a finite number of

exceptions.) Which quadric surfaces are doubly ruled?

5.3 Ruled surfaces and surfaces of revolution

Level surfaces have an ‘algebraic’ origin, in that they arise from a function

f(x, y, z). On the other hand, the two classes of surfaces considered in this

section arise from geometric constructions.

Example 5.3.1

A ruled surface is a surface that is a union of straight lines, called the rulings

(or sometimes the generators) of the surface.

q

p

° ±
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Suppose that C is a curve in R3 that meets each of these lines. Any point p

of the surface lies on one of the given straight lines, which intersects C at q,

say. If γ : (α, β) → R3 is a parametrization of C with γ(u) = q, and if δ(u) is

a non-zero vector in the direction of the line passing through γ(u), then

p = γ(u) + vδ(u),

for some scalar v. Denoting the right-hand side by σ(u, v), it is clear that σ :

U → R3 is a smooth map, where U = {(u, v) ∈ R2 | α < u < β}. Moreover,

denoting d/du by a dot,

σu = γ̇ + vδ̇, σv = δ.

Thus, σ is regular if γ̇ + vδ̇ and δ are linearly independent. This will be true,

for example, if γ̇ and δ are linearly independent and v is sufficiently small.

Thus, to get a surface, the curve C must never be tangent to the rulings.

An important special case is that in which the rulings are all parallel to each

other; the ruled surface S is then called a generalized cylinder. In the above

notation, we can take δ to be a constant unit vector, say a, parallel to the

rulings, and the parametrization becomes

σ(u, v) = γ(u) + va.

a

°

Since

σ(u, v) = σ(u′, v′) ⇐⇒ γ(u)− γ(u′) = (v′ − v)a,

for σ to be a injective (and hence a surface patch), no straight line parallel

to a should meet γ in more than one point. Finally, σu = γ̇, σv = a, so σ is

regular if and only if γ is never tangent to the rulings.

The parametrization is simplest when γ lies in a plane perpendicular to a

(in fact, this can always be achieved by replacing γ by its perpendicular pro-

jection onto such a plane – see Exercise 5.3.3). The regularity condition is then
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clearly satisfied provided γ̇ is never zero, i.e., provided γ is regular. We might

as well take the plane to be the xy-plane and a = (0, 0, 1) to be parallel to the

z-axis. Then, γ(u) = (f(u), g(u), 0) for some smooth functions f and g, and

the parametrization becomes

σ(u, v) = (f(u), g(u), v).

For example, starting with a circle, we get a circular cylinder. Taking the

circle to have centre the origin, radius 1 and to lie in the xy-plane, it can be

parametrized by

γ(u) = (cosu, sinu, 0),

defined for 0 < u < 2π and −π < u < π, say. This gives the atlas for the unit

cylinder found in Example 4.1.3.

The second special case we shall consider is that in which the rulings all

pass through a certain fixed point, say v; then S is called a generalized cone

with vertex v.

P

°

We can take δ(u) = γ(u)− v, giving

σ(u, v) = (1 + v)γ(u)− vv.

Now,

σ(u, v) = σ(u′, v′) ⇐⇒ (1 + v)γ(u)− (1 + v′)γ(u′) + (v′ − v)v = 0;

since (1+v)− (1+v′)+(v′−v) = 0, the equation on the right-hand side means

that the points v, γ(u) and γ(u′) are collinear. So, for σ to be a surface patch,
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no straight line passing through v should pass through more than one point of

γ (in particular, γ should not pass through v). Finally, we have σu = (1+v)γ̇,

σv = γ − v, so σ is regular provided v �= −1, i.e., the vertex of the cone

is omitted (cf. Example 4.1.5), and none of the straight lines forming the cone is

tangent to γ.

The parametrization is simplest when γ lies in a plane. If this plane con-

tains v, the cone is simply part of that plane. Otherwise, we can take v to be

the origin and the plane to be z = 1. Then, γ(u) = (f(u), g(u), 1) for some

smooth functions f and g, and the parametrization takes the form

σ(u, v) = v(f(u), g(u), 1),

after making the reparametrization v �→ v − 1.

Example 5.3.2

A surface of revolution is the surface obtained by rotating a plane curve, called

the profile curve, around a straight line in the plane. The circles obtained by

rotating a fixed point on the profile curve around the axis of rotation are called

the parallels of the surface, and the curves on the surface obtained by rotating

the profile curve through a fixed angle are called its meridians. (This agrees

with the use of these terms in geography, if we think of the earth as the surface

obtained by rotating a circle passing through the poles about the polar axis

and we take u and v to be latitude and longitude, respectively.)

z

°

°(u)

v

v
y

x
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Let us take the axis of rotation to be the z-axis and the plane to be the

xz-plane. Any point p of the surface is obtained by rotating some point q of

the profile curve through an angle v (say) around the z-axis. If

γ(u) = (f(u), 0, g(u))

is a parametrization of the profile curve containing q, p is of the form

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)).

To check regularity, we compute (with a dot denoting d/du):

σu = (ḟ cos v, ḟ sin v, ġ), σv = (−f sin v, f cos v, 0),

∴ σu × σv = (f ġ cos v,−f ġ sin v, f ḟ),

∴ ‖ σu × σv ‖2= f2(ḟ2 + ġ2).

Thus, σu × σv will be non-vanishing if f(u) is never zero, i.e., if γ does not

intersect the z-axis, and if ḟ and ġ are never zero simultaneously, i.e., if γ is

regular. In this case, we might as well assume that f(u) > 0, so that f(u) is

the distance of σ(u, v) from the axis of rotation. Then, σ is injective provided

that γ does not self-intersect and the angle of rotation v is restricted to lie in

an open interval of length ≤ 2π. Under these conditions, surface patches of the

form σ give the surface of revolution the structure of a surface.

EXERCISES

5.3.1 The surface obtained by rotating the curve x = cosh z in the xz-plane

around the z-axis is called a catenoid. Describe an atlas for this

surface.
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5.3.2 Show that

σ(u, v) = (sechu cos v, sechu sin v, tanhu)

is a regular surface patch for S2 (it is called Mercator’s projection).

Show that meridians and parallels on S2 correspond under σ to

perpendicular straight lines in the plane. (This patch is ’derived’ in

Exercise 6.3.3.)

5.3.3 Show that, if σ(u, v) is the (generalized) cylinder in Example 5.3.1:

(i) The curve γ̃(u) = γ(u) − (γ(u) · a)a is contained in a plane

perpendicular to a.

(ii) σ(u, v) = γ̃(u) + ṽa, where ṽ = v + γ(u) · a.

(iii) σ̃(u, ṽ) = γ̃(u) + ṽa is a reparametrization of σ(u, v).

This exercise shows that, when considering a generalized cylinder

σ(u, v) = γ(u) + va, we can always assume that the curve γ is

contained in a plane perpendicular to the vector a.

5.3.4 Consider the ruled surface

σ(u, v) = γ(u) + vδ(u), (5.5)

where ‖ δ(u) ‖= 1 and δ̇(u) �= 0 for all values of u (a dot denotes

d/du). Show that there is a unique point Γ(u), say, on the ruling

through γ(u) at which δ̇(u) is perpendicular to the surface. The

curve Γ is called the line of striction of the ruled surface σ (of course,

it need not be a straight line). Show that Γ̇ · δ̇ = 0. Let ṽ = v+ γ̇·δ̇
‖δ̇‖2

,

and let σ̃(u, ṽ) be the corresponding reparametrization of σ. Then,

σ̃(u, ṽ) = Γ(u) + ṽδ(u). This means that, when considering ruled

surfaces as in (5.5), we can always assume that γ̇ · δ̇ = 0. We shall

make use of this in Chapter 12.

5.4 Compact surfaces

A subset X of R3 is called compact if it is closed (i.e., the set of points in R3

that are not in X is open) and bounded (i.e., X is contained in some open

ball). On several occasions later in the book we shall be particularly interested

in compact surfaces.

Example 5.4.1

Any sphere is compact. Let us consider the unit sphere S2 for simplicity.

Obviously S2 is bounded as it is contained in the open ball D2(0) (for example).
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To show that S2 is closed, let p be a point not in S2, so that ‖ p ‖ �= 1. Sup-

pose, for example, that ‖ p ‖> 1 (a similar argument applies if ‖ p ‖< 1). Let

ǫ = ‖ p ‖−1. Then the open ball Dǫ(p) does not intersect S
2, for if q ∈ Dǫ(p)

the triangle inequality ‖ p ‖= ‖ (p− q) + q ‖≤ ‖ p− q ‖ + ‖ q ‖ gives

‖ q ‖≥ ‖ p ‖ − ‖ p− q ‖> ‖ p ‖ −ǫ = 1,

so ‖ q ‖> 1 It follows that the set of points of R3 that are not in S2 is open.

Example 5.4.2

A plane is not compact since it is obviously unbounded.

Example 5.4.3

The open disc

D = {(x, y, z) ∈ R
2 |x2 + y2 < 1, z = 0}

is a non-compact surface. It is obviously bounded (it is contained in D1(0));

it is not closed, however, since the point p = (1, 0, 0) is not in D and for any

ǫ > 0 the open ball Dǫ(p) contains the point (1− 1
2ǫ, 0, 0) which is in D.

It is a surprising result that there are very few compact surfaces in R3 up to

diffeomorphism, and they can all be described explicitly. We have already seen

the simplest example, the sphere. The next simplest is the torus considered in

Exercise 4.2.5. More generally, one can join such tori together (see above). This

surface is denoted by Tg, where g is the number of holes, called the genus of

the surface (we take g = 0 for the sphere). We accept the following theorem

without proof:
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Theorem 5.4.4

For any integer g ≥ 0, Tg has an atlas making it a smooth surface. Moreover,

every compact surface is diffeomorphic to one of the Tg.

Corollary 5.4.5

Every compact surface is orientable.

Proof

Each of the surfaces Tg obviously has an ‘interior’, which is bounded, and an

‘exterior’ which is unbounded. Hence, we can choose the unit normal at each

point of the surface to point into the exterior region. This provides a smooth

choice of unit normal at every point of the surface Tg, so Tg is orientable. Since

every compact surface is diffeomorphic to one of the surfaces Tg, the corollary

follows from Exercise 4.5.2.

EXERCISES

5.4.1 One of the following surfaces is compact and one is not:

(i) x2 − y2 + z4 = 1.

(ii) x2 + y2 + z4 = 1.

Which is which, and why? Sketch the compact surface.

5.4.2 Explain, without giving a detailed proof, why the tube (Exercise

4.2.7) around a closed curve in R3 with no self-intersections is a

compact surface diffeomorphic to a torus (provided the tube has

sufficiently small radius).

5.5 Triply orthogonal systems

A triply orthogonal system of surfaces consists of three families of surfaces such

that

(i) Exactly one surface of each family passes through each point of R3 (or of

some open subset of R3).

(ii) Any two surfaces belonging to different families intersect orthogonally.
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The simplest example of such a system is given by the families of planes parallel

to the coordinates planes, namely

x = u, y = v, z = w.

Fixing the value of u (say) determines a particular plane in the first family, and

similarly for the other families. If p = (a, b, c) ∈ R3, there is a unique plane

from each family passing through p, namely those corresponding to u = a,

v = b and w = c. The orthogonality property (ii) is obviously satisfied.

More generally, suppose that the three families are of the form

U(x, y, z) = u, V (x, y, z) = v, W (x, y, z) = w, (5.6)

where U , V and W are smooth functions of (x, y, z). By Theorem 5.1.1, these

equations determine three families of smooth surfaces provided the vectors∇U ,

∇V and ∇W are non-zero everywhere. Assuming that this condition holds, by

Exercise 5.1.2 the non-zero vector ∇U is then perpendicular to the tangent

plane of the surface U(x, y, z) = u (and similarly for V,W ), so condition (ii) in

the definition of a triply orthogonal system becomes

∇U ·∇V = ∇V ·∇W = ∇W ·∇U = 0. (5.7)

Now consider the smooth function

F (x, y, z) = (U(x, y, z), V (x, y, z),W (x, y, z)).

The Jacobian matrix of F is

J(F ) =

⎛

⎝

Ux Uy Uz

Vx Vy Vz

Wx Wy Wz

⎞

⎠

so the rows of J(F ) are the components of the non-zero vectors ∇U , ∇V and

∇W . By Eq. 5.7, these vectors are orthogonal, and hence linearly indepen-

dent, so the matrix J(F ) is invertible. By the inverse function theorem (see

Section 5.6), Eq. 5.6 can be solved for (x, y, z) in terms of (u, v, w) (at least if

(u, v, w) is restricted to lie in a suitable open subset of R3), say

(x, y, z) = Σ(u, v, w). (5.8)

Then, setting u equal to a constant u0 (say) gives a parametrization (v, w) �→
Σ(u0, v, w) of the surface U(x, y, z) = u0 (and similarly for the other two

families of surfaces).

Regarding x, y, z as functions of u, v, w via Eq. 5.8, we can differentiate both

sides of the equation

U(x, y, z) = u
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with respect to u, v and w. This gives

Uxxu + Uyyu + Uzzu=1

Uxxv + Uyyv + Uzzv=0

Uxxw + Uyyw + Uzzw=0.

These three equations, together with the corresponding equations for V and W ,

can be written in vector form as follows:

∇U ·Σu = 1, ∇U ·Σv = 0, ∇U ·Σw =0,

∇V ·Σu = 0, ∇V ·Σv = 1, ∇V ·Σw =0, (5.9)

∇W ·Σu = 0, ∇W ·Σv = 0, ∇W ·Σw =1.

By Eqs. 5.8 and 5.9, ∇U and Σu are both perpendicular to ∇V and ∇W , so

they are parallel to each other. Thus,Σu is normal to the surface U(x, y, z) = u,

and Σv and Σw are tangent to it (the last statement is also obvious from the

statement at the end of the preceding paragraph).

We shall have more to say about triply orthogonal systems later, but now

we shall describe one of the most beautiful examples of such systems, which

is provided by the theory of quadric surfaces. Let p, q and r be constants such

that 0 < p2 < q2 < r2. For (x, y, z) ∈ R3, t �= p2, q2 or r2, let

Ft(x, y, z) =
x2

p2 − t
+

y2

q2 − t
+

z2

r2 − t
.

Fix a point (a, b, c) ∈ R3 with a, b and c all non-zero. The following properties

are clear:

(i) Ft(a, b, c) is a continuous function of t in each of the open intervals

(−∞, p2), (p2, q2), (q2, r2) and (r2,∞).

(ii) Ft(a, b, c) → 0 as t → ±∞.

(iii) Ft(a, b, c) → ∞ as t approaches p2, q2 or r2 from the left, and Ft(a, b, c)

→ −∞ as t approaches p2, q2 or r2 from the right.

It follows from these properties and the intermediate value theorem that

there is at least one value of t in each open interval (−∞, p2), (p2, q2) and

(q2, r2) such that Ft(a, b, c) = 1. On the other hand, the equation Ft(a, b, c) = 1

is equivalent to the cubic equation Gt(a, b, c) = 0, where

Gt(a, b, c) = a2(q2 − t)(r2 − t) + b2(p2 − t)(r2 − t) + c2(p2 − t)(q2 − t)

−(p2 − t)(q2 − t)(r2 − t),
(5.10)
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which has at most three real roots. It follows that there are unique numbers

u ∈ (−∞, p2), v ∈ (p2, q2) and w ∈ (q2, r2) (depending on (a, b, c), of course)

such that

Fu(a, b, c) = 1, Fv(a, b, c) = 1, Fw(a, b, c) = 1. (5.11)

The three quadrics Fu(x, y, z) = 1, Fv(x, y, z) = 1 and Fw(x, y, z) = 1 are

ellipsoids, hyperboloids of one sheet and hyperboloids of two sheets, respec-

tively, and we have shown that there is one of each passing through each point

(a, b, c) ∈ R3 that does not lie on any of the coordinate planes. We show that

they form a triply orthogonal system.

Indeed, the vector (
x

p2 − t
,

y

q2 − t
,

z

r2 − t

)

is perpendicular to the tangent plane of the surface Ft(x, y, z) = 1 at (x, y, z).

Thus, to show that the first two surfaces in (5.11) are perpendicular at (a, b, c),

for example, we have to show that

a2

(p2 − u)(p2 − v)
+

b2

(q2 − u)(q2 − v)
+

c2

(r2 − u)(r2 − v)
= 0.

But the left-hand side of this equation is

Fu(a, b, c)− Fv(a, b, c)

u− v
=

1− 1

u− v
= 0.
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We can also construct a simultaneous parametrization of the three families.

Note that the cubic Gt(a, b, c) in (5.10) is equal to (t−u)(t− v)(t−w), since it

is divisible by this product and the coefficients of t3 agree. Putting t = p2, q2

and r2 and solving the resulting equations for a2, b2 and c2, we find that

a =±

√

(p2 − u)(p2 − v)(p2 − w)

(r2 − p2)(q2 − p2)
,

b =±

√

(q2 − u)(q2 − v)(q2 − w)

(p2 − q2)(r2 − q2)
, (5.12)

c =±

√

(r2 − u)(r2 − v)(r2 − w)

(p2 − r2)(q2 − r2)
.

Define σ(u, v,w) = (x, y, z), where x, y and z are the right-hand sides of

the three equations in (5.12), respectively, with any combination of signs.

For fixed u (resp. fixed v, fixed w), this gives eight surface patches for

the corresponding ellipsoid Fu(x, y, z) = 1 (resp. hyperboloid of one sheet

Fv(x, y, z) = 1, hyperboloid of two sheets Fw(x, y, z) = 1).

EXERCISES

5.5.1 Show that the following are triply orthogonal systems:

(i) The spheres with centre the origin, the planes containing the

z-axis and the circular cones with axis the z-axis.

(ii) The planes parallel to the xy-plane, the planes containing the

z-axis and the circular cylinders with axis the z-axis.

5.5.2 By considering the quadric surface Ft(x, y, z) = 0, where

Ft(x, y, z) =
x2

p2 − t
+

y2

q2 − t
− 2z + t,
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construct a triply orthogonal system (illustrated above) consisting

of two families of elliptic paraboloids and one family of hyperbolic

paraboloids. Find a parametrization of these surfaces analogous to

(5.12).

5.6 Applications of the inverse function theorem

In this section we give the proofs of Propositions 4.2.6 and 4.4.6 and

Theorem 5.1.1.

Suppose first that f : U → Rn is a smooth map, where U is an open subset

of Rm. If we write (ũ1, . . . , ũn) = f(u1, . . . , um), the Jacobian matrix of f is

J(f) =

⎛

⎜

⎜

⎜

⎜

⎝

∂ũ1

∂u1

∂ũ1

∂u2
· · · ∂ũ1

∂um
∂ũ2

∂u1

∂ũ2

∂u2
· · · ∂ũ2

∂um

...
...

. . .
...

∂ũn

∂u1

∂ũn

∂u2
· · · ∂ũn

∂um

⎞

⎟

⎟

⎟

⎟

⎠

.

This has already been used in the case m = n = 2 in Section 4.2, but now we

shall need it in other cases too.

The main tool that we use is the following theorem.

Theorem 5.6.1 (Inverse Function Theorem)

Let f : U → Rn be a smooth map defined on an open subset U of Rn (n ≥ 1).

Assume that, at some point x0 ∈ U , the Jacobian matrix J(f) is invertible.

Then, there is an open subset V of Rn and a smooth map g : V → Rn such

that

(i) y0 = f(x0) ∈ V

(ii) g(y0) = x0

(iii) g(V ) ⊆ U

(iv) g(V ) is an open subset of Rn

(v) f(g(y)) = y for all y ∈ V

In particular, g : V → g(V ) and f : g(V ) → V are inverse bijections.

Thus, the inverse function theorem says that, if J(f) is invertible at some

point, then f is bijective near that point and its inverse map is smooth. A proof

of this theorem can be found in books on multivariable calculus.
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As our first application of Theorem 5.6.1, we complete the proof of

Proposition 4.4.6. Suppose then that f : S → S̃ is a smooth map between sur-

faces S and S̃, let p ∈ S and assume that the linear map Dpf : TpS → Tf(p)S̃
is invertible. Let σ : U → R3 be a surface patch of S containing p, say

σ(u0, v0) = p, and let σ̃ : Ũ → R3 be a surface patch of S̃ containing f(p). By

shrinking U if necessary, we can assume that f maps σ(U) into σ̃(Ũ). Since f

is smooth, there are smooth functions α : U → R and β : U → R such that

f(σ(u, v)) = σ̃(α(u, v), β(u, v)).

From the remarks following Proposition 4.4.4, the matrix of Dpf with respect

to the bases {σu,σv} of TpS and {σ̃ũ, σ̃ṽ} of Tf(p)S̃ is the Jacobian matrix

(
αu αv

βu βv

)
.

Since Dpf is invertible, so is this matrix. By the inverse function theorem, the

smooth map U → R2 given by (u, v) �→ (α(u, v), β(u, v)) is a diffeomorphism

from an open subset V (say) of U containing (u0, v0) to an open subset Ṽ

(say) of Ũ . Then O = σ(V ) and Õ = σ̃(Ṽ ) are open subsets of S and S̃,
respectively, and f is a diffeomorphism from O to Õ. This proves that f is a

local diffeomorphism.

We now give the proof of Proposition 4.2.6. We want to show that, if σ :

U → R3 and σ̃ : Ũ → R3 are two regular patches in the atlas of a surface S,
the transition map from σ to σ̃ is smooth where it is defined.

Suppose that a point p lies in both patches, say σ(u0, v0) = σ̃(ũ0, ṽ0) = p.

Write

σ(u, v) = (f(u, v), g(u, v), h(u, v)).

Since σu and σv are linearly independent, the Jacobian matrix

⎛

⎝

fu fv
gu gv
hu hv

⎞

⎠

of σ has rank 2 everywhere. Hence, at least one of its three 2× 2 submatrices

is invertible at each point. Suppose that the submatrix

(

fu fv
gu gv

)

is invertible at p. (The proof is similar in the other two cases.) By the inverse

function theorem applied to the map F : U → R2 given by

F (u, v) = (f(u, v), g(u, v)),
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there is an open subset V of R2 containing F (u0, v0) and an open subset W of

U containing (u0, v0) such that F : W → V is bijective with a smooth inverse

F−1 : V → W . Since σ : W → σ(W ) is bijective, the projection π : σ(W ) → V

given by π(x, y, z) = (x, y) is also bijective, since π = F ◦ σ−1 on σ(W ). It

follows that W̃ = σ̃−1(σ(W )) is an open subset of Ũ and that

σ−1 ◦ σ̃ = F−1 ◦ F̃

on W̃ , where F̃ = π◦σ̃. Since F−1 and F̃ are smooth on W̃ , so is the transition

map σ−1 ◦ σ̃. Since σ−1 ◦ σ̃ is smooth on an open set containing any point

(u0, v0) where it is defined, it is smooth.

Finally, we give the proof of Theorem 5.1.1. Let p, W and f be as in the

statement of the theorem, and suppose that p = (x0, y0, z0) and that fz �= 0

at p. (The proof is similar in the other two cases.) Consider the map F : W →
R3 defined by

F (x, y, z) = (x, y, f(x, y, z)).

The Jacobian matrix of F is
⎛

⎝

1 0 0

0 1 0

fx fy fz

⎞

⎠ ,

and is clearly invertible at p since fz �= 0. By the inverse function theorem,

there is an open subset V of R3 containing F (x0, y0, z0) = (x0, y0, 0) and a

smooth map G : V → W such that W̃ = G(V ) is open and F : W̃ → V and

G : V → W̃ are inverse bijections.

Since V is open, there are open subsets U1 of R2 containing (x0, y0) and

U2 of R containing 0 such that V contains the open set U1 × U2 of all points

(x, y, w) with (x, y) ∈ U1 and w ∈ U2. Hence, we might as well assume that

V = U1 × U2. The fact that F and G are inverse bijections means that

G(x, y, w) = (x, y, g(x, y, w))

for some smooth map g : U1 × U2 → R, and

f(x, y, g(x, y, w)) = w

for all (x, y) ∈ U1, w ∈ U2.

Define σ : U1 → R3 by

σ(x, y) = (x, y, g(x, y, 0)).

Then σ is a homeomorphism from U1 to S∩W̃ (whose inverse is the restriction

to S ∩ W̃ of the projection π(x, y, z) = (x, y)). It is obvious that σ is smooth,

and it is regular because

σx × σy = (−gx,−gy, 1)
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is nowhere zero. So σ is a regular surface patch on S containing the given

point p. Since p was an arbitrary point of S, we have constructed an atlas for

S making it into a (smooth) surface.

EXERCISES

5.6.1 Show that, if γ : (α, β) → R3 is a curve whose image is contained

in a surface patch σ : U → R3, then γ(t) = σ(u(t), v(t)) for some

smooth map (α, β) → U , t �→ (u(t), v(t)).

5.6.2 Prove Theorem 1.5.1 and its analogue for level curves in R3

(Exercise 1.5.1).

5.6.3 Let σ : U → R3 be a smooth map such that σu × σv �= 0 at some

point (u0, v0) ∈ U . Show that there is an open subset W of U con-

taining (u0, v0) such that the restriction of σ to W is injective. Note

that, in the text, surface patches are injective by definition, but this

exercise shows that injectivity near a given point is a consequence

of regularity.

5.6.4 Let σ : U → R3 be a regular surface patch, let (u0, v0) ∈ U and let

σ(u0, v0) = (x0, y0, z0). Suppose that the unit normal N(u0, v0) is

not parallel to the xy-plane. Show that there is an open set V in R2

containing (x0, y0), an open subset W of U containing (u0, v0) and

a smooth function ϕ : V → R such that σ̃(x, y) = (x, y, ϕ(x, y)) is

a reparametrization of σ : W → R3. Thus, ‘near’ p, the surface is

part of the graph z = ϕ(x, y).

What happens if N(u0, v0) is parallel to the xy-plane?



6
The first fundamental form

Perhaps the first thing that a geometrically inclined bug living on a surface

might wish to do is to measure the distance between two points of the surface.

Of course, this will usually be different from the distance between these points

as measured by an inhabitant of the ambient three-dimensional space, since

the straight line segment which furnishes the shortest path between the points

in R3 will generally not be contained in the surface. The object that allows

one to compute lengths on a surface, and also angles and areas, is the first

fundamental form of the surface.

6.1 Lengths of curves on surfaces

If our bug-geometer walks along a curve γ on a surface S, the distance he

travels is
∫

‖ γ̇(t) ‖ dt

(see Definition 1.2.1). To compute this he would need to be able to find the

length of tangent vectors to the surface, such as γ̇, which in turn can be com-

puted from the object in the following definition.

Andrew Pressley, Elementary Differential Geometry: Second Edition, 121
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-891-9 6,
c© Springer-Verlag London Limited 2010



122 6. The first fundamental form

Definition 6.1.1

Let p be a point of a surface S. The first fundamental form of S at p associates

to tangent vectors v,w ∈ TpS the scalar

〈v,w〉p,S= v ·w.

Thus, 〈v,w〉p,Sis just the dot product, but restricted to tangent vectors

to S at p. We shall usually omit one or both of the subscripts unless there is

some danger of confusion as to which point or surface is intended.

The first fundamental form 〈 , 〉 is an example of an inner product (see

Appendix 0): this follows immediately from the fact that the dot product defines

an inner product on R3.

In traditional works on this subject, the first fundamental form looks slightly

different. Suppose that σ(u, v) is a surface patch of S. Then, any tangent vector

to S at a point p in the image of σ can be expressed uniquely as a linear

combination of σu and σv. Define maps du : TpS → R and dv : TpS → R by

du(v) = λ, dv(v) = µ if v = λσu + µσv,

for some λ, µ ∈ R. It is easy to see that du and dv are linear maps. Then, using

the fact that 〈 , 〉 is a symmetric bilinear form, we have

〈v,v〉 = λ2〈σu,σu〉+ 2λµ〈σu,σv〉+ µ2〈σv,σv〉.

Writing
E = ‖ σu ‖2, F = σu · σv, G = ‖ σv ‖2,

this becomes

〈v,v〉 = Eλ2 + 2Fλµ+Gµ2 = Edu(v)2 + 2Fdu(v)dv(v) +Gdv(v)2.

Traditionally, the expression

Edu2 + 2Fdudv +Gdv2

is called the first fundamental form of the surface patch σ(u, v). Note that the

coefficients E,F,G and the linear maps du, dv depend on the choice of surface

patch for S (see Exercise 6.1.4), but the first fundamental form itself depends

only on S and p.

If γ is a curve lying in the image of a surface patch σ, we have

γ(t) = σ(u(t), v(t))

for some smooth functions u(t) and v(t). Then, denoting d/dt by a dot, we have

γ̇ = u̇σu + v̇σv by the chain rule, so

〈γ̇, γ̇〉 = Eu̇2 + 2F u̇v̇ +Gv̇2,
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and the length of γ is given by
∫

(Eu̇2 + 2F u̇v̇ +Gv̇2)1/2dt. (6.1)

Example 6.1.2

For the plane
σ(u, v) = a+ up+ vq

(see Example 4.1.2) with p and q being perpendicular unit vectors, we have

σu = p, σv = q, so E = ‖ σu ‖2 = ‖ p ‖2 = 1, F = σu · σv = p · q = 0,

G =‖ σv ‖2 =‖ q ‖2 =1, and the first fundamental form is simply

du2 + dv2.

Example 6.1.3

Consider a surface of revolution

σ(u, v) =(f(u) cos v, f(u) sin v, g(u)).

Recall from Example 5.3.2 that we can assume that f(u) > 0 for all values of

u and that the profile curve u �→ (f(u), 0, g(u)) is unit-speed, i.e., ḟ2 + ġ2 =1

(a dot denoting d/du). Then:

σu = (ḟ cos v, ḟ sin v, ġ), σv =(−f sin v, f cos v, 0),

∴ E =‖ σu ‖2= ḟ2 + ġ2 =1, F = σu · σv =0, G =‖ σv ‖2=f2.

So the first fundamental form is

du2 + f(u)2dv2.

A special case is the unit sphere S2 in latitude-longitude coordinates

(Example 4.1.4). We take u = θ, v = ϕ, f(θ) = cos θ, g(θ) = sin θ, giving

the first fundamental form of S2 as

dθ2 + cos2 θ dϕ2.

Example 6.1.4

We consider a generalized cylinder

σ(u, v) =γ(u) + va

defined in Example 5.3.1. As we saw in Exercise 5.3.3, we can assume that γ is

unit-speed, a is a unit vector, and γ is contained in a plane perpendicular to a.

Then, denoting d/du by a dot, σu = γ̇, σv =a, so E =‖ σu ‖2 =‖ γ̇ ‖2=1,
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F = σu · σv = γ̇ · a = 0, G = ‖ σv ‖2 = ‖ a ‖2= 1, and the first fundamental

form of σ is

du2 + dv2.

Note that this is the same as the first fundamental form of the plane

(Example 6.1.2). The geometrical reason for this coincidence will be revealed

in the next section.

Example 6.1.5

We consider a generalized cone

σ(u, v) = (1 + v)γ(u)− vv

(Example 5.3.1). Before computing its first fundamental form, we make some

simplifications to σ.

First, translating the surface by v (which does not change its first funda-

mental form – see Exercise 6.1.2), we get the surface patch σ1 = σ − v =

(1 + v)(γ − v), so if we replace γ by γ1 = γ − v we get σ1 = (1 + v)γ1. This

means that we might as well assume that v = 0 to begin with. Next, we saw in

Example 5.3.1 that for σ to be a regular surface patch, γ must not pass through

the origin, so we can define a new curve γ̃ by γ̃(u) = γ(u)/ ‖ γ(u) ‖. Setting

ũ = u, ṽ = (1 + v)/ ‖ γ(u) ‖, we get a reparametrization σ̃(ũ, ṽ) = ṽγ̃(ũ) of σ

with ‖ γ̃ ‖= 1. We can therefore assume to begin with that σ(u, v) = vγ(u)

with ‖ γ(u) ‖= 1 for all values of u (geometrically, this means that we can

replace γ by the intersection of the cone with S2). Finally, reparametrizing

again, we can assume that γ is unit-speed, for we saw in Example 5.3.1 that

for σ to be regular, γ must be regular.

With these assumptions, and with a dot denoting d/du, we have σu = vγ̇,

σv = γ, so E = ‖ vγ̇ ‖2= v2 ‖ γ̇ ‖2 = v2, F = vγ̇ · γ = 0 (since ‖ γ ‖= 1),

G = ‖ γ ‖2 = 1, and the first fundamental form is

v2du2 + dv2.

Note that, as for the generalized cylinder in Example 6.1.4, the first fundamen-

tal form of the generalized cone does not depend on the curve γ.

EXERCISES

6.1.1 Calculate the first fundamental forms of the following surfaces:

(i) σ(u, v) = (sinhu sinh v, sinhu cosh v, sinhu).

(ii) σ(u, v) = (u− v, u+ v, u2 + v2).
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(iii) σ(u, v) = (coshu, sinhu, v).

(iv) σ(u, v) = (u, v, u2 + v2).

What kinds of surfaces are these?

6.1.2 Show that applying an isometry of R3 to a surface does not change

its first fundamental form. What is the effect of a dilation (i.e., a

map R3 → R3 of the form v �→ av for some constant a �= 0)?

6.1.3 Let Edu2+2Fdudv+Gdv2 be the first fundamental form of a surface

patch σ(u, v) of a surface S. Show that, if p is a point in the image

of σ and v,w ∈ TpS, then

〈v , w〉 = E d u (v)d u (w) + F (du(v)dv(w) + du(w)dv(v)) +Gdv(w)dv(w).

6.1.4 Suppose that a surface patch σ̃(ũ, ṽ) is a reparametrization of a

surface patch σ(u, v), and let

Ẽdũ2 + 2F̃ dũdṽ + G̃dṽ2 and Edu2 + 2Fdudv +Gdv2

be their first fundamental forms. Show that:

(i) du = ��
�ũdũ + ��

�ṽ dṽ, dv = �	
�ũdũ+ �	

�ṽdṽ.

(ii) If

J =

⎛

⎜

⎝

∂u

∂ũ

∂u

∂ṽ
∂v

∂ũ

∂v

∂ṽ

⎞

⎟

⎠

is the Jacobian matrix of the reparametrization map (ũ, ṽ) �→ (u, v),

and J t is the transpose of J , then

(

Ẽ F̃

F̃ G̃

)

= J t

(

E F

F G

)

J.

6.1.5 Show that the following are equivalent conditions on a surface patch

σ(u, v) with first fundamental form Edu2 + 2Fdudv +Gdv2:

(i) Ev = Gu = 0.

(ii) σuv is parallel to the standard unit normal N.

(iii) The opposite sides of any quadrilateral formed by parameter

curves of σ have the same length (see the remarks following the

proof of Proposition 4.4.2).
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When these conditions are satisfied, the parameter curves of σ are

said to form a Chebyshev net. Show that, in that case, σ has a

reparametrization σ̃(ũ, ṽ) with first fundamental form

dũ2 + 2 cos θ dũdṽ + dṽ2,

where θ is a smooth function of (ũ, ṽ). Show that θ is the angle

between the parameter curves of σ̃. Show further that, if we put

û = ũ + ṽ, v̂ = ũ − ṽ, the resulting reparametrization σ̂(û, v̂) of

σ̃(ũ, ṽ) has first fundamental form

cos2 ω dû2 + sin2 ω dv̂2,

where ω = θ/2.

6.2 Isometries of surfaces

We observed in Example 6.1.4 that a plane and a generalized cylinder, when

suitably parametrized, have the same first fundamental form. The geometric

reason for this is not hard to see. A plane piece of paper can be ‘wrapped’ on a

cylinder in the obvious way without crumpling the paper (see Example 4.3.2).

If we draw a curve on the plane, then after wrapping it becomes a curve on

the cylinder. Because there is no crumpling, the lengths of these two curves

will be the same. Since the lengths are computed as the integral of (the square

root of) the first fundamental form, it is plausible that the first fundamental

forms of the two surfaces should be the same. Experiment suggests, on the

other hand, that it is impossible to wrap a plane sheet of paper around a

sphere without crumpling. Thus, we expect that a plane and a sphere do not

have the same first fundamental form.

The following definition makes precise what it means to wrap one surface

onto another without crumpling.

Definition 6.2.1

If S1 and S2 are surfaces, a smooth map f : S1 → S2 is called a local isometry if

it takes any curve in S1 to a curve of the same length in S2. If a local isometry

f : S1 → S2 exists, we say that S1 and S2 are locally isometric.

We shall see that every local isometry is a local diffeomorphism; a local

isometry that is a diffeomorphism is called an isometry. It is obvious that any
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composite of local isometries is a local isometry, and that the inverse of any

isometry is an isometry.

To express the condition for a local isometry in a more useful form, we need

the following construction. Let f : S1 → S2 be a smooth map and let p ∈ S1.

For v,w ∈ TpS1, define

f∗〈v,w〉p = 〈Dpf(v), Dpf(w)〉f(p).

Then, f∗〈 , 〉p is a symmetric bilinear form on TpS1. Indeed, the symmetry is

obvious and if λ, λ′ ∈ R, v,v′,w ∈ Tp,

f∗〈λv+ λ′v′,w〉p = 〈Dpf(λv+ λ′v′), Dpf(w)〉f(p)

= 〈λDpf(v) + λ′Dpf(v
′), Dpf(w)〉f(p)

= λ〈Dpf(v), Dpf(w)〉f(p) + λ′〈Dpf(v
′), Dpf(w)〉f(p)

= λf∗〈v,w〉p + λ′f∗〈v′,w〉p.

Theorem 6.2.2

A smooth map f : S1 → S2 is a local isometry if and only if the symmetric

bilinear forms 〈 , 〉p and f∗〈 . 〉p on TpS1 are equal for all p ∈ S1.

Proof

If γ1 is a curve on S1, the length of the part of γ1 with endpoints γ1(t0) and

γ1(t1) is
∫ t1

t0

〈γ̇1, γ̇1〉
1/2dt. (6.2)

The length of the corresponding part of the curve γ2 = f ◦ γ1 on S2 is
∫ t1

t0

〈γ̇2, γ̇2〉
1/2dt =

∫ t1

t0

〈Df(γ̇1), Df(γ̇1)〉
1/2dt =

∫ t1

t0

f∗〈γ̇1, γ̇1〉
1/2dt. (6.3)

It is now obvious that, if the two symmetric bilinear forms in the statement of

the theorem are equal, the curves γ1 and f ◦ γ1 have the same length.

Conversely, suppose that the integrals in ( 6.2) and ( 6.3) are equal for all

curves γ on S1. Then, the integrands must be the same for all γ:

〈γ̇, γ̇〉 = f∗〈γ̇, γ̇〉.

Since any tangent vector v to S1 is the tangent vector of a curve on S1, it

follows that
〈v,v〉 = f∗〈v,v〉 for all v. (6.4)
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Since 〈 , 〉 and f∗〈 , 〉 are symmetric bilinear forms, it follows from (6.4) that

they are equal (see Appendix 0).

Thus, f is a local isometry if and only if

〈Dpf(v), Dpf(w)〉f(p) = 〈v,w〉p

for all p ∈ S1 and all v,w ∈ TpS1. This means that the linear map Dpf :

TpS1 → Tf(p)S2 is an isometry, i.e., it preserves lengths (see Appendix 1). In

short, f is a local isometry if and only if Dpf is an isometry for all p ∈ S1.

It follows from this theorem that every local isometry is a local diffeomor-

phism. Indeed, let f : S1 → S2 be a local isometry and let p ∈ S1. If Dpf is not

invertible, there is a non-zero tangent vector v ∈ TpS1 such that Dpf(v) = 0.

But this gives a contradiction: since f is a local isometry,

0 �= 〈v,v〉p = 〈Dpf(v), Dpf(v)〉f(p) = 〈0,0〉p =0.

Hence, Dpf is invertible, and so f is a local diffeomorphism (Proposition 4.4.6).

It will be useful to express Theorem 6.2.2 in terms of surface patches.

Corollary 6.2.3

A local diffeomorphism f : S1 → S2 is a local isometry if and only if, for any

surface patch σ1 of S1, the patches σ1 and f ◦ σ1 of S1 and S2, respectively,

have the same first fundamental form.

Proof

In view of the theorem, we have to show that the patches σ1 and f ◦σ1 =σ2,

say, have the same first fundamental form if and only if the symmetric bilinear

forms 〈 , 〉p and f∗〈 , 〉p are equal for all p in the image of σ1.

The first fundamental form of σi (i =1, 2) isEidu
2+2Fidudv+Gidv

2, where

Ei =〈(σi)u, (σi)u〉, Fi =〈(σi)u, (σi)v〉, Gi =〈(σi)v, (σi)v〉. We compute

〈(σ2)u, (σ2)u〉 =〈Df((σ1)u), Df((σ1)u)〉 =f∗〈(σ1)u, (σ1)u〉.

Thus, if 〈 , 〉 = f∗〈 . 〉, then E1 =E2, and similarly F1 =F2 and G1 =G2.

Conversely, if these last three equations hold, then 〈v,w〉 =f∗〈v,w〉 whenever

the tangent vectors v,w are of the form (σ1)u or (σ1)v. The bilinearity property

then implies that 〈v,w〉 =f∗〈v,w〉 for all v,w.

This proof actually shows that, if p ∈ S1 is in the image of a surface patch

σ1, then σ1 and f ◦ σ1 have the same first fundamental form at p if and only

if Dpf is an isometry; it follows that, if p is in the image of another surface

patch σ2, then σ1 and f ◦σ1 have the same first fundamental form at p if and

only if the same is true of σ2 and f ◦ σ2.
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Example 6.2.4

The map f from the yz-plane to the unit cylinder defined in Example 4.3.2 is a

local isometry. For, if we use the surface patch σ1(u, v) = (0, u, v) for the plane

and σ2(u, v) = (cosu, sinu, v) for the cylinder, then f(σ1(u, v)) = σ2(u, v),

and by Example 6.1.4 σ1 and σ2 have the same first fundamental form.

A similar argument shows that a generalized cone is locally isometric to

a plane (see Example 6.2.1). It turns out that there is another class of sur-

faces that is locally isometric to a plane, called tangent developables. (In older

works, a ‘development’ of one surface on another was the term used for a local

isometry.) A tangent developable is the union of the tangent lines to a curve in

R3 – the tangent line to a curve γ at a point γ(u) is the straight line passing

through γ(u) and parallel to the tangent vector γ̇(u).

°(u) °(u)

°

¾(u; v)

.

We might as well assume that γ is unit-speed. The most general point on

the tangent line at γ(u) is

σ(u, v) = γ(u) + vγ̇(u),

for some scalar v. Now

σu × σv = (γ̇ + vγ̈)× γ̇ = vγ̈ × γ̇.

For σ to be regular, it is thus necessary that γ̈ is never zero, or in other words,

the curvature κ = ‖ γ̈ ‖ is > 0 at all points of γ. Now, γ̇ = t, the unit tangent

vector of γ, and γ̈ = ṫ= κn, where n is the principal normal to γ, so

σu × σv = κvn× t= −κvb,

where b is the binormal of γ. Thus, σ will be regular if κ > 0 everywhere and

v �= 0. The latter condition means that, for regularity, we must exclude the

curve γ itself from the surface. Typically, the regions v > 0 and v < 0 of the
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tangent developable form two sheets which meet along a sharp edge formed by

the curve γ where v = 0, as the following illustration of the tangent developable

of a circular helix indicates (see Exercise 6.2.4):

Our interest in tangent developables stems from the following result.

Proposition 6.2.5

Any tangent developable is locally isometric to a plane.

Proof

We use the above notation, assuming that γ is unit-speed and that κ > 0. Now,

E = ‖ σu ‖2=(γ̇ + vγ̈) · (γ̇ + vγ̈) = γ̇ · γ̇ + 2vγ̇ · γ̈ + v2γ̈ · γ̈ =1+ v2κ2,

F = σu · σv =(γ̇ + vγ̈) · γ̇ =γ̇ · γ̇ + vγ̇ · γ̈ =1,

G = ‖ σv ‖2=γ̇ · γ̇ =1,

since γ̇ · γ̇ =1, γ̇ · γ̈ = 0, γ̈ · γ̈ = κ2. So the first fundamental form of the

tangent developable is

(1 + v2κ2)du2 + 2dudv + dv2. (6.5)

We are going to show that an open subset of the plane can be parametrized so

that it has the same first fundamental form. This will prove the proposition.

By Theorem2.2.5, there is a plane unit-speed curve γ̃ whose curvature is κ

(we can even assume that its signed curvature is κ). By the above calculations,

the first fundamental form of the tangent developable of γ̃ is also given by (6.5).
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But since γ̃ is a plane curve, its tangent lines obviously fill out part of the plane

in which γ̃ lies.

There is a converse to Proposition 6.2.5: any sufficiently small open subset of

a surface locally isometric to a plane is an open subset of a plane, a generalized

cylinder, a generalized cone or a tangent developable. The proof of this will be

given in Section 8.4.

EXERCISES

6.2.1 By thinking about how a circular cone can be ‘unwrapped’ onto the

plane, write down an isometry from

σ(u, v) = (u cos v, u sin v, u), u > 0, 0 < v < 2π,

(a circular half-cone with a straight line removed) to an open subset

of the xy-plane.

6.2.2 Is the map from the circular half-cone x2 + y2 = z2, z > 0, to the

xy-plane given by (x, y, z) �→ (x, y, 0) a local isometry?

t = 0 t = 0:6

t = 0:2 t = 0:8

t = 0:4 t = 1
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6.2.3 Consider the surface patches

σ(u, v) = (coshu cos v, coshu sin v, u), σ̃(u, v) = (u cos v, u sin v, v),

parametrizing the catenoid (Exercise 5.3.1) and the helicoid

(Exercise 4.2.6), respectively. Show that the map from the catenoid

to the helicoid that takes σ(u, v) to σ̃(sinhu, v) is a local isometry.

Which curves on the helicoid correspond under this isometry to the

parallels and meridians of the catenoid?

In fact, there is an isometric deformation of the catenoid into a

helicoid. Let

σ̂(u, v) = (− sinhu sin v, sinhu cos v,−v).

This is the result of reflecting the helicoid σ̃ in the xy-plane and

then translating it by π/2 parallel to the z-axis. Define

σt(u, v) = cos tσ(u, v) + sin t σ̂(u, v),

so that σ0(u, v) = σ(u, v) and σπ/2(u, v) = σ̂(u, v). Show that, for

all values of t, the map σ(u, v) �→ σt(u, v) is a local isometry. Show

also that the tangent plane of σt at the point σt(u, v) depends only

on u, v and not on t. The surfaces σt are shown above for several val-

ues of t. (The result of this exercise is ‘explained’ in Exercises 12.5.3

and 12.5.4.)

6.2.4 Show that the line of striction (Exercise 5.3.4) of the tangent de-

velopable of a unit-speed curve γ is γ itself. Show also that the

intersection of this surface with the plane passing through a point

γ(u0) of the curve and perpendicular to it at that point is a curve

of the form

Γ(v) = γ(u0)−
1

2
κ(u0)v

2n(u0) +
1

3
κ(u0)τ(u0)v

3b(u0)

if we neglect higher powers of v (we assume that the curvature κ(u0)

and the torsion τ(u0) of γ at γ(u0) are both non-zero). Note that

this curve has an ordinary cusp (Exercise 1.3.3) at γ(u0), so the

tangent developable has a sharp ‘edge’ where the two sheets v > 0

and v < 0 meet along γ. This is evident for the tangent developable

of a circular helix illustrated earlier in this section.



6.3 Conformal mappings of surfaces 133

6.3 Conformal mappings of surfaces

Now that we understand how to measure lengths of curves on surfaces, it is

natural to ask about angles. Suppose that two curves γ and γ̃ on a surface S

intersect at a point p. The angle θ of intersection of γ and γ̃ at p is defined

to be the angle between the tangent vectors γ̇ and ˙̃γ (evaluated at t = t0
and t = t̃0, respectively). Using the dot product formula for the angle between

vectors, we see that θ is given by

cos θ =
γ̇ · ˙̃γ

‖ γ̇ ‖‖ ˙̃γ ‖
=

〈γ̇, ˙̃γ〉

〈γ̇, γ̇〉1/2〈 ˙̃γ, γ̇〉1/2
. (6.6)

˜ ˜

(u; v)

P

¾

°

µ
°̃

(u; v)

As usual, it will be useful to have an expression for this in terms of a

surface patch. Suppose then that γ and γ̃ lie in a surface patch σ of S, so that

γ(t) = σ(u(t), v(t)) and γ̃(t) = σ(ũ(t), ṽ(t)) for some smooth functions u, v, ũ

and ṽ. If Edu2 + 2Fdudv + Gdv2 is the first fundamental form of σ, then by

( 6.6) we have

cos θ =
Eu̇ ˙̃u+ F (u̇ ˙̃v + ˙̃uv̇) +Gv̇ ˙̃v

(Eu̇2 + 2F u̇v̇ +Gv̇2)1/2(E ˙̃u2 + 2F ˙̃u ˙̃v +G ˙̃v2)1/2
. (6.7)

Example 6.3.1

The parameter curves on a surface patch σ(u, v) can be parametrized by

γ(t) = σ(u0, t), γ̃(t) = σ(t, v0),

respectively, where u0 is the constant value of u and v0 is the constant value

of v in the two cases. Thus,

u(t) = u0, v(t) = t, ũ(t) = t, ṽ(t) = v0,

∴ u̇ = 0, v̇ = 1, ˙̃u = 1, ˙̃v = 0.
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These parameter curves intersect at the point σ(u0, v0) of the surface. By

Eq. 6.7, their angle of intersection θ is given by

cos θ =
F√
EG

,

where E,F and G are evaluated at (u0, v0). In particular, the parameter curves

are orthogonal if and only if F = 0.

Corresponding to the Definition 6.2.1 of a local isometry, we have the fol-

lowing definition.

Definition 6.3.2

If S1 and S2 are surfaces, a conformal map f : S1 → S2 is a local diffeomorphism

such that, if γ1 and γ̃1 are any two curves on S1 that intersect, say at a point

p ∈ S1, and if γ2 and γ̃2 are their images under f , the angle of intersection of

γ1 and γ̃1 at p is equal to the angle of intersection of γ2 and γ̃2 at f(p).

In short, f is conformal if and only if it preserves angles. The reason this

definition requires f to be a local diffeomorphism is contained in Exercise 4.4.4

– note that the angle between two intersecting curves is well defined only when

both curves are regular.

It is obvious that any composite of conformal maps is conformal, and that

the inverse of any conformal diffeomorphism is conformal.

As a special case, if σ : U → R3 is a surface, then σ may be viewed as

a map from an open subset of the plane (namely U), parametrized by (u, v)

in the usual way, and the image S of σ, and we say that σ is a conformal

parametrization or a conformal surface patch of S if this map between surfaces

is conformal.

Theorem 6.3.3

A local diffeomorphism f : S1 → S2 is conformal if and only if there is a

function λ : S1 → R such that

f∗〈v,w〉p = λ(p)〈v,w〉p for all p ∈ S1 and v,w ∈ TpS1.

It is not hard to see that the function λ, if it exists, is necessarily smooth.

Proof

Let γ and γ̃ be two curves on S1 that intersect at a point p ∈ S1. The angle

θ of intersection of the curves is given by Eq. 6.6. The corresponding angle of
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intersection of the curves f ◦γ and f ◦ γ̃ on S2 is obtained from the expression

on the right-hand side of Eq. 6.6 by replacing γ̇ and ˙̃γ with (f ◦γ )̇ and (f ◦ γ̃ )̇,
respectively. Now,

〈(f ◦ γ )̇, (f ◦ γ̃ )̇ 〉f(p) = 〈Dpf(γ̇), Dpf( ˙̃γ)〉f(p) = f∗〈γ̇, ˙̃γ〉p,

with similar expressions for 〈(f ◦γ )̇, f ◦γ )̇ 〉f(p) and 〈(f ◦ γ̃ )̇, f ◦ γ̃ )̇ 〉f(p). Thus,

to compute the angle of intersection of the curves f ◦ γ and f ◦ γ̃ on S2, we

must replace 〈 , 〉 in the numerator and denominator of the expression on the

right-hand side of Eq. 6.6 by f∗〈 , 〉. It is now clear that, if f∗〈 , 〉 = λ〈 , 〉,

this replacement leaves the expression in Eq. 6.6 unchanged (since the factor λ

cancels out) and so f is conformal.

For the converse, we must show that if

〈γ̇, ˙̃γ〉

〈γ̇, γ̇〉1/2〈 ˙̃γ, ˙̃γ〉1/2
=

f∗〈γ̇, ˙̃γ〉

f∗〈γ̇, γ̇〉1/2f∗〈 ˙̃γ, ˙̃γ〉1/2
(6.8)

for all pairs of intersecting curves γ and γ̃ on S1, then f∗〈 , 〉 is proportional

to 〈 , 〉. Since every tangent vector to S1 is the tangent vector of a curve on

S1, Eq. 6.8 implies that

〈v,w〉

〈v,v〉1/2〈w,w〉1/2
=

f∗〈v,w〉

f∗〈v,v〉1/2f∗〈w,w〉1/2
(6.9)

for all tangent vectors v,w to S1.

Choose an orthonormal basis {v1,v2} of the tangent plane to S1 with re-

spect to its first fundamental form 〈 , 〉. Let

λ = f∗〈v1,v1〉, µ = f∗〈v1,v2〉, ν = f∗〈v2,v2〉.

We apply Eq. 6.9 with v = v1 and w = cos θ v1 + sin θ v2, where θ ∈ R. This

gives

cos θ =
λ cos θ + µ sin θ√

λ(λ cos2 θ + 2µ sin θ cos θ + ν sin2 θ)
.

Taking θ = π/2 gives µ = 0, which implies that

λ = λ cos2 θ + ν sin2 θ for all θ ∈ R.

Hence, λ = ν. This implies that f∗〈v,w〉 = λ〈v,w〉 whenever v and w are basis

vectors. Since both sides are bilinear forms, it follows that f∗〈 , 〉 = λ〈 , 〉.

Reinterpreting this result in terms of surface patches gives
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Corollary 6.3.4

A local diffeomorphism f : S1 → S2 is conformal if and only if, for any surface

patch σ of S1, the first fundamental forms of the patches σ of S1 and f ◦σ of

S2 are proportional.

In particular, a surface patch σ(u, v) is conformal if and only if its first

fundamental form is λ(du2 + dv2) for some smooth function λ(u, v).

Example 6.3.5

We consider the unit sphere S2. If q is any point of S2 other than the north

pole n = (0, 0, 1), the straight line joining n and q intersects the xy-plane at

some point p, say. The map that takes q to p is called stereographic projection

from S2 to the plane, and we denote it by Π. We are going to show that Π is

conformal.

Let p = (u, v, 0), q = (x, y, z). Since p,q,n lie on a straight line, there is a

scalar ρ such that

q− n = ρ(p− n),

and hence

(x, y, z) = (0, 0, 1) + ρ((u, v, 0)− (0, 0, 1)) = (ρu, ρv, 1− ρ). (6.10)

Hence, ρ = 1− z, u = x/(1− z), v = y/(1− z) and we have

Π(x, y, z) =

(

x

1− z
,

y

1− z
, 0

)

.

Q

P

N

On the other hand, from Eq. 6.10 and x2 + y2 + z2 = 1 we get ρ =

2/(u2 + v2 + 1) and hence

q =

(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)

.
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If we denote the right-hand side by σ1(u, v), then σ1 is a parametrization of

S2 with the north pole removed. Parametrizing the xy-plane by σ2(u, v) =

(u, v, 0), we then have

Π(σ1(u, v)) = σ2(u, v).

According to Corollary 6.3.4, to show that Π is conformal we have to show

that the first fundamental forms of σ1 and σ2 are proportional. The first fun-

damental form of σ2 is du2 + dv2. As to σ1, we get

(σ1)u =

(

2(v2 − u2 + 1)

(u2 + v2 + 1)2
,

−4uv

(u2 + v2 + 1)2
,

4u

(u2 + v2 + 1)2

)

,

(σ1)v =

(

−4uv

(u2 + v2 + 1)2
,
2(u2 − v2 + 1)

(u2 + v2 + 1)2
,

4v

(u2 + v2 + 1)2

)

.

This gives

E1 = (σ1)u · (σ1)u =
4(v2 − u2 + 1)2 + 16u2v2 + 16u2

(u2 + v2 + 1)4
=

4

(u2 + v2 + 1)2
.

Similarly, F1 = 0, G1 = 4/(u2 + v2 + 1)2. Thus, the first fundamental form of

σ2 is λ times that of σ1, where λ = 1
4 (u

2 + v2 + 1)2.

It is often useful to think of Π as a map to the complex numbers C rather

than to the xy-plane, by identifying u+ iv ∈ C with (u, v, 0). Moreover, we can

parametrize S2 itself in a partly complex way by identifying (x, y, z) ∈ S2 with

(x + iy, z). Then, S2 becomes the set of pairs (w, z) where w ∈ C, z ∈ R and

|w|2 + z2 = 1. Stereographic projection then takes the simple form

Π(w, z) =
w

1− z
,

and the surface patch σ1 is given by

σ1(w) =

(

2w

|w|2 + 1
,
|w|2 − 1

|w|2 + 1

)

.

The inconvenience of having to exclude the north pole from the domain

of definition of Π can be overcome by introducing a ‘point at infinity’ ∞ and

defining the ‘extended complex plane’ C∞ = C∪{∞}. If we agree that Π maps

the north pole to ∞, it defines a bijection Π : S2 → C∞. Further discussion of

this map is left to the exercises.

Returning now to the general case, it is natural to ask when there is a con-

formal map between two surfaces. The surprising answer is that this is always

the case locally: if p1 and p2 are points of two surfaces S1 and S2, respectively,

there are open subsets O1 of S1 containing p1 and O2 of S2 containing p2 and a

conformal diffeomorphism O1 → O2. This follows from the following theorem:
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Theorem 6.3.6

Every surface has an atlas consisting of conformal surface patches.

Indeed, if σ1 and σ2 are conformal parametrizations of S1 and S2, the map

σ1(u, v) �→ σ2(u, v) will be conformal as it is the composite of the conformal

diffeomorphism σ2 and the inverse of the conformal diffeomorphism σ1.

We shall prove a special case of Theorem 6.3.6 later (see Theorem 12.4.1),

but the general case is beyond the scope of this book.

EXERCISES

6.3.1 Show that every local isometry is conformal. Give an example of a

conformal map that is not a local isometry.

6.3.2 Show that Enneper’s surface

σ(u, v) =

(

u−
u3

3
+ uv2, v −

v3

3
+ vu2, u2 − v2

)

is conformally parametrized.

6.3.3 Recall from Example 6.1.3 that the first fundamental form of the

latitude–longitude parametrization σ(θ, ϕ) of S2 is

dθ2 + cos2 θ dϕ2.

Find a smooth function ψ such that the reparametrization σ̃(u, v) =

σ(ψ(u), v) is conformal. Verify that σ̃ is, in fact, the Mercator

parametrization in Exercise 5.3.2.

6.3.4 Let Φ : U → V be a diffeomorphism between open subsets of R2.

Write

Φ(u, v) = (f(u, v), g(u, v)),

where f and g are smooth functions on the uv-plane. Show that Φ

is conformal if and only if

either (fu = gv and fv = −gu) or (fu = −gv and fv = gu).

(6.11)

Show that, if J(Φ) is the Jacobian matrix of Φ, then det(J(Φ)) > 0

in the first case and det(J(Φ)) < 0 in the second case.

6.3.5 (This exercise requires a basic knowledge of complex analysis.) Re-

call that the transition map between two surface patches in an atlas

for a surface S is a smooth map between open subsets of R2. Since
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R2 is the ‘same’ as the complex numbers C (via (u, v) ↔ u + iv),

we can ask whether such a transition map is holomorphic. One says

that S is a Riemann surface if S has an atlas for which all the tran-

sition maps are holomorphic. Deduce from Theorem 6.3.6 and the

preceding exercise that every orientable surface has an atlas making

it a Riemann surface. (You will need to recall from complex analysis

that a smooth function Φ as in the preceding exercise is holomorphic

if and only if the first pair of equations in (6.11) hold – these are the

Cauchy–Riemann equations. If the second pair of equations in (6.11)

hold, Φ is said to be anti-holomorphic.)

6.3.6 Define a map Π̃ similar to Π by projecting from the south pole of S2

onto the xy-plane. Show that this defines a second conformal surface

patch σ̃1, which covers the whole of S2 except the south pole. What

is the transition map between these two patches? Why do the two

patches σ1 and σ̃1 not give S2 the structure of a Riemann surface?

How can σ̃1 be modified to produce such a structure?

6.3.7 Show that the stereographic projection map Π takes circles on S2 to

Circles in C∞, and that every Circle arises in this way. (A circle on

S2 is the intersection of S2 with a plane; a Circle in C∞ is a line or

a circle in C – see Appendix 2).

6.3.8 Show that, if M is a Möbius transformation or a conjugate-Möbius

transformation (see Appendix 2), the bijection Π−1◦M◦Π : S2 → S2

is a conformal diffeomorphism of S2. It can be shown that every

conformal diffeomorphism of S2 is of this type.

6.4 Equiareal maps and a theorem

of Archimedes

Suppose that σ : U → R3 is a surface patch on a surface S. The image of

σ is covered by the two families of parameter curves obtained by setting u =

constant and v = constant, respectively. Fix (u0, v0) ∈ U ; since the change in

σ(u, v) corresponding to a small change ∆u in u is approximately σu∆u and

that corresponding to a small change ∆v in v is approximately σv∆v, the part

of the surface contained by the parameter curves on the surface corresponding

to u = u0, u = u0 + ∆u, v = v0 and v = v0 + ∆v is approximately a paral-

lelogram in the plane with sides given by the vectors σu∆u and σv∆v (the

derivatives being evaluated at (u0, v0)):
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¾vΔv

¾uΔu

¾(u0, v0)

u = u0

v = v0

v = v0 + Δv

u = u0 + Δu

Recalling that the area of a parallelogram in the plane with sides a and

b is ‖ a× b ‖, we see that the area of the parallelogram on the surface is

approximately

‖ σu∆u× σv∆v ‖= ‖ σu × σv ‖ ∆u∆v.

This suggests the following definition.

Definition 6.4.1

The area Aσ(R) of the part σ(R) of a surface patch σ : U → R3 corresponding

to a region R ⊆ U is

Aσ(R) =

∫

R

‖ σu × σv ‖ dudv.

Of course, this integral may be infinite – think of the area of a whole plane,

for example. However, the integral will be finite if, say, R is contained in a

rectangle that is entirely contained, along with its boundary, in U .

The quantity ‖ σu × σv ‖ that appears in the definition of area is easily

computed in terms of the first fundamental form Edu2 +2Fdudv+Gdv2 of σ:

Proposition 6.4.2

‖ σu × σv ‖= (EG− F 2)1/2.
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Proof

We use a result from vector algebra: if a,b,c and dare vectors in R3,

(a× b) · (c × d ) = (a · c )(b · d )− (a · d )(b · c ).

Applying this to ‖ σu × σv ‖2 = (σu × σv) · (σu × σv), we get

‖ σu × σv ‖2= (σu · σu)(σv · σv)− (σu · σv)
2 = EG− F 2.

Note that, for a regular surface, EG−F 2 > 0 everywhere, since for a regular

surface σu × σv is never zero.

Thus, our definition of area is

Aσ(R) =

∫

R

(EG− F 2)1/2dudv. (6.12)

We sometimes denote (EG − F 2)1/2dudv by dAσ . But we have still to check

that this definition is sensible, i.e., it is unchanged if σ is reparametrized. This

is certainly not obvious, since E, F and G change under reparametrization (see

Exercise 6.1.4).

Proposition 6.4.3

The area of a surface patch is unchanged by reparametrization.

Proof

Let σ : U → R3 be a surface patch and let σ̃ : Ũ → R3 be a reparametrization

of σ, with reparametrization map Φ : Ũ → U . Thus, if Φ(ũ, ṽ) = (u, v), we

have

σ̃(ũ, ṽ) = σ(u, v).

Let R̃ ⊆ Ũ be a region, and let R = Φ(R̃) ⊆ U . We have to prove that

∫

R

‖ σu × σv ‖ dudv =

∫

R̃

‖ σ̃ũ × σ̃ṽ ‖ dũdṽ.

We showed in the proof of Proposition 4.2.7 that

σ̃ũ × σ̃ṽ = det(J(Φ))σu × σv,
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where J(Φ) is the J acobian matrix of Φ. Hence,
∫

R̃

‖ σ̃ũ × σ̃ṽ ‖ dũdṽ =

∫

R̃

|det(J(Φ))| ‖ σu × σv ‖ dũdṽ.

By the change of variables formula for double integrals, the right-hand side of

this equation is exactly
∫

R

‖ σu × σv ‖ dudv.

Now that we have a good definition of area, we can ask which maps between

surfaces are area-preserving.

Definition 6.4.4

Let S1 and S2 be two surfaces. A local diffeomorphism f : S1 → S2 is said to

be equiareal if it takes any region in S1 to a region of the same area in S2 (we

assume that each of the regions is sufficiently small, so that it is contained in

the image of some surface patch).

We have the following analogue of Theorem 6.2.2.

Theorem 6.4.5

A local diffeomorphism f : S1 → S2 is equiareal if and only if, for any surface

patch σ(u, v) on S1, the first fundamental forms

E1du
2 + 2F1dudv +G1dv

2 and E2du
2 + 2F2dudv +G2dv

2

of the patches σ on S1 and f ◦ σ on S2 satisfy

E1G1 − F 2
1 = E2G2 − F 2

2 . (6.13)

The proof is very similar to that of Theorem 6.2.2 and we leave it as

Exercise 6.4.6. As with isometries and conformal maps, it is obvious that any

composite of equaireal diffeomorphism is equiareal, and that the inverse of any

equiareal difeomorphism is equaireal.
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z

P

Q

One of the most famous examples of an equiareal map was found by

Archimedes. Legend has it that the discovery was inscribed onto his tomb-

stone by the Roman general Marcellus who led the siege of Syracuse in

which Archimedes perished. Naturally, since calculus was not available to him,

Archimedes’ proof of his theorem was quite different from ours.

Consider the unit sphere x2+y2+z2 = 1 and the unit cylinder x2+y2 = 1.

The sphere is contained inside the cylinder, and the two surfaces touch along

the circle x2 + y2 = 1 in the xy-plane. For each point p ∈ S2 other than the

poles (0, 0,±1), there is a unique straight line parallel to the xy-plane and

passing through the point p and the z-axis. This line intersects the cylinder in

two points, one of which, say q, is closest to p. Let f be the map from S2 (with

the two poles removed) to the cylinder that takes p to q.

To find a formula for f , let (x, y, z) be the Cartesian coordinates of p, and

(X,Y, Z) those of q. Since the line through p and q is parallel to the xy-plane,

we have Z = z and (X,Y ) = λ(x, y) for some scalar λ. Since (X,Y, Z) is on

the cylinder,

1 = X2 + Y 2 =λ2(x2 + y2),
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∴ λ = ±(x2+ y2)−1/2.

Taking the + sign gives the point q, so we get

f(x, y, z) =

(

x

(x2 + y2)1/2
,

y

(x2 + y2)1/2
, z

)

.

We shall show in the proof of the next theorem that f is a diffeomorphism.

Theorem 6.4.6 (Archimedes’ Theorem)

The map f is an equiareal diffeomorphism.

Proof

We take the atlas for the surface S1 consisting of the sphere minus the north

and south poles with two patches, both given by the formula

σ1(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ),

and defined on the open sets

{−π/2 < θ < π/2, 0 < ϕ < 2π} and {−π/2 < θ < π/2, −π < ϕ < π}.

The image of σ1(θ, ϕ) under the map f is the point

σ2(θ, ϕ) = (cosϕ, sinϕ, sin θ) (6.14)

of the cylinder. It is easy to check that this gives an atlas for the surface S2,

consisting of the part of the cylinder between the planes z = 1 and z = −1,

with two patches, both given by Eq. 6.14 and defined on the same two open

sets as σ1. We have to show that Eq. 6.13 holds.

We computed the coefficients E1, F1 and G1 of the first fundamental form

of σ1 in Example 6.1.3:

E1 = 1, F1 =0, G1 =cos2 θ.

For σ2, we get (σ2)θ =(0, 0, cos θ), (σ2)ϕ =(− sinϕ, cosϕ, 0), and so

E2 =cos2 θ, F2 =0, G2 =1.

It is now clear that Eq. 6.13 holds.

Note that, since f corresponds simply to the identity map (θ, ϕ) �→ (θ, ϕ)

in terms of the parametrizations σ1 and σ2 of the unit sphere and cylinder,

respectively, it follows that f is a diffeomorphism.
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The following classical result provides a beautiful application of Archimedes’

theorem. A spherical triangle is a triangle on a sphere whose sides are arcs of

great circles.

Theorem 6.4.7

The area of a spherical triangle on the unit sphere S2 with internal angles α, β

and γ is

α+ β + γ − π.

Proof

We begin by using Archimedes’ Theorem 6.4.6 to compute the area of a ‘lune’,

i.e., the area enclosed between two great circles:

µ

We can assume that the great circles intersect at the poles, since this can

be achieved by applying a rotation of S2, and this does not change areas. If

θ is the angle between them, the image of the lune under the map f is a

curved rectangle on the cylinder of width θ and height 2 (see next page). If we

now apply the isometry which unwraps the cylinder on the plane, this curved

rectangle on the cylinder will map to a genuine rectangle on the plane, with

width θ and height 2. By Archimedes’ theorem, the lune has the same area as

the curved rectangle on the cylinder, and since every isometry is an equiareal

map (see Exercise 6.4.6), this has the same area as the genuine rectangle in the

plane, namely 2θ. Note that this correctly gives the area of the whole sphere

to be 4π.
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z

Turning now to the proof of the theorem, let A, B and C be the vertices of

the triangle (so that α is the angle at A, etc.). The three great circles, of which

the sides of the triangle are arcs, divide S2 into eight triangles, as shown in the

following diagram (in which A′ is the antipodal point of A, etc.).

A
B

C

B�

A�

C�

Note that the two triangles with vertices A,B,C and A′, B, C together form a

lune with angle α, etc. Hence, denoting the triangle with vertices A,B,C by

ABC and its area by A(ABC), etc., we have, by the preceding calculation,
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A(ABC) +A(A′BC) = 2α,

A(ABC) +A(AB′C) = 2β,

A(ABC) +A(ABC′) = 2γ.

Adding these equations, we get

2A(ABC) + {A(ABC) +A(A′BC) +A(AB′C) +A(ABC′)} = 2α+ 2β + 2γ.

(6.15)

Now, the triangles ABC, AB′C, AB′C′ and ABC′ together make a hemisphere

(namely, the hemisphere containing the vertex A with boundary the great circle

passing through B and C), so

A(ABC) +A(AB′C) +A(AB′C′) +A(ABC′) = 2π. (6.16)

Finally, since the map that takes each point of S2 to its antipodal point is an

isometry, and hence equiareal, we have

A(A′BC) = A(AB′C′).

Inserting this into Eq. 6.16, we see that the term in { } on the left-hand side

of Eq. 6.15 is equal to 2π. Rearranging now gives the result.

In Chapter 13, we shall obtain a far-reaching generalization of this result

in which S2 is replaced by an arbitrary surface, and great circles by arbitrary

curves on the surface.

EXERCISES

6.4.1 Determine the area of the part of the paraboloid z = x2 + y2 with

z ≤ 1 and compare with the area of the hemisphere x2+y2+z2 = 1,

z ≤ 0.

6.4.2 A sailor circumnavigates Australia by a route consisting of a triangle

whose sides are arcs of great circles. Prove that at least one interior

angle of the triangle is ≥ π
3 + 10

169 radians. (Take the Earth to be a

sphere of radius 6,500km and assume that the area of Australia is

7.5 million square kilometres.)

6.4.3 A spherical polygon on S2 is the region formed by the intersection

of n hemispheres of S2, where n is an integer ≥ 3. Show that,

if α1, . . . , αn are the interior angles of such a polygon, its area is

equal to
n∑

i=1

αi − (n− 2)π.
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6.4.4 Suppose that S2 is covered by spherical polygons such that the in-

tersection of any two polygons is either empty or a common edge or

vertex of each polygon. Suppose that there are F polygons, E edges

and V vertices (a common edge or vertex of more than one polygon

being counted only once). Show that the sum of the angles of all

the polygons is 2πV . By using the preceding exercise, deduce that

V − E + F = 2. (This result is due to Euler; it will be generalized

in Chapter 13.)

6.4.5 Show that:

(i) Every local isometry is an equiareal map.

(ii) A map that is both conformal and equiareal is a local isometry.

Give an example of an equiareal map that is not a local isometry.

6.4.6 Prove Theorem 6.4.5.

6.4.7 Let σ(u, v) be a surface patch with standard unit normal N. Show

that

N× σu =
Eσv − Fσu√

EG− F 2
, N× σv =

Fσv −Gσv√
EG− F 2

.

6.5 Spherical geometry

We conclude this chapter with a brief discussion of the simplest example of

a geometry different from Euclid’s, namely spherical geometry. The study of

spherical geometry, like that of plane geometry, began in antiquity. Its im-

portance was astronomical: to locate an object in the sky such as a star, one

imagines a fixed large sphere centred on the observer; the straight line con-

necting the observer to the star intersects the sphere in a point whose position

gives the direction in which the observer must look in order to see the star.

Thus, the three-dimensional universe is projected onto the surface of a sphere.

Of course, spherical geometry is also important because we live on the surface

of a sphere, to a reasonably good approximation.

If we are to develop spherical geometry by analogy with Euclidean plane

geometry, the first thing to do is to decide what should be the analogue of

straight lines. Now straight lines are the shortest curves joining any two of

their points (Exercise 1.2.4), so it is natural to ask what the corresponding

shortest curves are on the sphere. We are going to show that these are arcs of

great circles.



6.5 Spherical geometry 149

For simplicity, we work with the unit sphere S2. If p and q are two distinct

points of S2, there is always at least one great circle passing through p and q.

To see this, note first that if p and q are antipodal points, i.e., if p = −q,

the intersection of S2 with any plane containing this diameter is a great cir-

cle through p and q. If p and q are not antipodal points, the plane passing

through the origin perpendicular to the (non-zero) vector p × q intersects S2

in a great circle passing through p and q. The argument shows, in fact, that if

p and q are not antipodal there is a unique great circle passing through them

both; in this case p and q divide this great circle into two circular arcs, one

shorter than the other. If p and q are antipodal, there are infinitely many great

circles passing through both points, each of which is divided by p and q into

two semicircles (see below).

p q

Proposition 6.5.1

Let p and q be distinct points of S2. If p �= −q, the short great circle arc joining

p and q is the unique curve of shortest length joining p and q. If p = −q, any

great semicircle joining p and q is a shortest curve joining these two points.

Proof

By using a rotation of S2 (which is an isometry of S2 – see Exercise 6.1.2) we

can assume that p is the north pole (0, 0, 1), and by a further rotation about

the z-axis we can assume in addition that q is a point on the great semicir-

cle C passing through the north and south poles and the point (1, 0, 0), say

(cosα, 0, sinα), where −π
2 ≤ α ≤ π

2 . Then the distance from p to q measured

along the short great circle arc joining them is π/2− α.
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The first fundamental form of the latitude-longitude parametrization

σ(θ, ϕ) is dθ2 + cos2 θ dϕ2 (Example 6.1.3) so the length of a curve γ(t)

passing through p when t = t0 and through q when t = t1, say, is

∫ t1

t0

(

θ̇2 + cos2 θ ϕ̇2
)1/2

dt.

The integrand is not less than |θ̇|, so the length of the part of γ between p and

q is not less than
∫ t1

t0

|θ̇| dt =

∫ π/2

α

dθ = π/2− α,

which is the length of the short great circle arc passing through p and q.

Conversely, if γ has exactly this length, we must have

(

θ̇2 + cos2 θ ϕ̇2
)1/2

= |θ̇|,

and hence

cos θ ϕ̇ = 0

for all t between t0 and t1. Since cos θ = 0 only at the north and south poles

(0, 0,±1), we must therefore have ϕ̇ = 0 at all other points of γ; this means

that ϕ is a constant, which must be zero since γ passes through p, and so γ is

part of C.

Thus, great circles are the spherical analogues of straight lines in Euclidean

geometry. One immediate difference between spherical and plane geometry is

that there are no parallel lines in spherical geometry, for any two great circles

intersect (the two planes containing the two great circles intersect in a diameter

of S2, the endpoints of which are the points of intersection of the two great

circles).

The spherical distance dS2(p,q) between two points p,q ∈ S2 is the length

of the short great circle arc joining p and q. This is simply the angle between

the vectors p and q in the range 0 ≤ dS2(p,q) ≤ π: in symbols,

cos dS2(p,q) = p · q.

There is a beautiful formula for the spherical distance in terms of the stereo-

graphic projection map Π (see Example 6.3.5). Recall that Π defines a bijection

from S2 to the extended complex plane C∞; we write dS2(Π−1(w),Π−1(z)) sim-

ply as dS2(w, z).
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Proposition 6.5.2

If w, z ∈ C, the spherical distance dS2(z, w) between the points of S2 corre-

sponding to w and z under stereographic projection is given by

tan
1

2
dS2(w, z) =

|w − z|

|1 + w̄z|
.

Proof

From Example 6.3.5, the point of S2 corresponding to w ∈ C is

Π−1(w) =

(

w + w̄

|w|2 + 1
,

w − w̄

i(|w|2 + 1)
,
|w|2 − 1

|w|2 + 1

)

.

Hence,

cos dS2(w, z) = Π−1(w) ·Π−1(z)

=
(w + w̄)(z + z̄)− (w − w̄)(z − z̄) + (|w|2 − 1)(|z|2 − 1)

(|w|2 + 1)(|z|2 + 1)

=
2(w̄z + wz̄) + (1− |w|2)(1− |z|2)

(|w|2 + 1)(|z|2 + 1)
. (6.17)

On the other hand, let t denote the right-hand side of the formula in the

statement of the proposition. Then,

1− t2

1 + t2
=

|1 + w̄z|2 − |w − z|2

|1 + w̄z|2 + |w − z|2

=
(1 + w̄z)(1 + wz̄)− (w − z)(w̄ − z̄)

(1 + w̄z)(1 + wz̄) + (w − z)(w̄ − z̄)

=
2(w̄z + wz̄) + (1− |w|2)(1 − |z|2)

(|w|2 + 1)(|z|2 + 1)
. (6.18)

The proposition follows on comparing Eqs. 6.17 and 6.18 and recalling the

identity

cos θ =
1− tan2 1

2θ

1 + tan2 1
2θ

.

Much of Euclidean geometry deals with the properties of triangles. We shall

always consider only spherical triangles with sides of length less than π.



152 6. The first fundamental form

Proposition 6.5.3

Suppose that a spherical triangle has sides of length A, B and C, and let α, β

and γ be its internal angles (so that α is the angle opposite the side of length

A, etc., and 0 ≤ α, β, γ < π). Then,

(i) cos γ =
cosC − cosA cosB

sinA sinB
,

(ii)
sinα

sinA
=

sinβ

sinB
=

sin γ

sinC
.

Two formulas similar to that in (i) can, of course, be obtained by making the

cyclic permutations A → B → C → A, α → β → γ → α.

Part (i) is called the ‘cosine rule’ for spherical triangles because it becomes

the usual cosine rule when A,B,C are small, in which case the spherical triangle

is ‘almost’ a plane triangle: using the approximations cosA = 1 − 1
2A

2 and

sinA = A, etc. we get

C2 = A2 +B2 − 2AB cos γ.

Similarly (ii) reduces to the familiar sine rule for plane triangles when A,

B, C are small.

Proof 6.5.3 Let a, b and c be the vertices of the triangle, so that α is the angle

at a, etc. Since A is the angle (measured in radians) between the unit vectors

b and c, etc., we have

cosA = b · c, cosB = c · a, cosC = a · b. (6.19)

Next, the side of the triangle of length C is an arc of the great circle that is

the intersection of S2 with the plane ΠC through the origin and perpendicular

to the vector a × b (and similarly for the other sides). Let Πc be the plane

passing through the vertex c parallel to the tangent plane of S2 there. Then

Πc intersects the planes ΠA and ΠB in two straight lines that are tangent to the

sides of the triangle passing through c. It follows that γ is the angle between

these two lines, which in turn is equal to the angle between ΠA and ΠB , i.e.,

the angle between b× c and a× c:

cos γ =
(b× c) · (a× c)

‖ b× c ‖ ‖ a× c ‖
. (6.20)

Of course, there are similar formulas for cosα and cosβ.
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Now

‖ b× c ‖= sinA, ‖ a× c ‖= sinB.

On the other hand, the triple product identity (see the proof of Proposition

6.4.2) gives

(b× c) · (a× c) = (a · b)(c · c)− (b · c)(a · c) = cosC − cosA cosB,

using Eq. 6.19. Inserting these formulas in Eq. 6.20 gives formula (i).

For (ii), we have

sinα =
� (a× c)× (a× b) ‖

sinB sinC
=

‖ ((a× c) · b)a− ((a× c) · a)b ‖

sinB sinC
=

|(a× c) · b|

sinB sinC
.

Hence,
sinα

sinA
=

|(a × c) · b|

sinA sinB sinC
. (6.21)

Now, the scalar triple product (a × c) · b is unchanged, up to a sign, by any

permutation of the vectors a, b and c. It follows that the left-hand side of

Eq. 6.21 is unchanged under any permutation of the vertices of the triangle.

This gives formula (ii).

As a special case, we have the spherical analogue of Pythagoras’ theorem:

Corollary 6.5.4

Suppose that a spherical triangle has sides of length A, B and C and that the

angle opposite the side of length C is a right angle. Then,

cosC = cosA cosB.

The formal analogy between Eqs. 6.19 and 6.20 suggests that we should

consider the spherical triangle with vertices

a∗ =
b× c

‖ b× c ‖
, b∗ =

c× a

‖ c× a ‖
, c∗ =

a× b

‖ a× b ‖
.

Note that the cyclic order a → b → c → a of the vertices is preserved in these

formulas; if the cyclic order was reversed the sign of all three vectors would

change. The triangles with vertices a∗,b∗, c∗ and −a∗,−b∗,−c∗ are called the

dual triangles of the triangle with vertices a,b, c.

Note that each of the two dual triangles is obtained from the other by

applying the antipodal map v �→ −v of S2; since this is an isometry of R3

(see Appendix 1), it is also an isometry of S2 (Exercise 6.1.2) so the two dual
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triangles have the same angles and sides of the same length. Geometrically,

±a∗ are the endpoints of the diameter of S2 perpendicular to the plane that

intersects S2 in the great circle passing through b and c: they are called the

poles of this great circle (thus, the north and south poles of S2 are the poles of

the equator).

Note also that ±a are the poles of the great circle through b∗ and c∗, since a

is perpendicular to b∗ and c∗. It follows that the dual triangles of the triangle

with vertices a∗,b∗, c∗ are the original triangle with vertices a,b, c and its

image under the antipodal map. This can also be verified algebraically:

b∗ × c∗ =
(c× a)× (a× b)

‖ c× a ‖‖ a× b ‖
=

((c× a) · b)a

‖ c× a ‖‖ a× b ‖
,

∴

b∗ × c∗

‖ b∗ × c∗ ‖
= ±a,

the sign being that of (c × a) · b = a · (b × c). Thus, the dual triangle of the

triangle with vertices a∗,b∗, c∗ is the original triangle if a · (b× c) > 0 and is

its image under the antipodal map if a · (b× c) < 0.

Proposition 6.5.5

Let α, β, γ and A,B,C be the angles and the lengths of the sides of a spher-

ical triangle, so that α is the angle opposite the side of length A, etc. Let

α∗, β∗, γ∗, A∗, B∗, C∗ be the corresponding quantities for either of the dual tri-

angles. Then,

α∗ = π −A, β∗ = π −B, γ∗ = π − C,

A∗ = π − α, B∗ = π − β, C∗ = π − γ.

Proof

Denoting the vertices of the triangle by a,b, c as above, Eq. 6.19 gives

cosA∗ = b∗ · c∗ =
(c × a) · (a× b)

‖ c× a ‖‖ a× b ‖
= − cosα,

so, since both α and A∗ are between 0 and π,

A∗ = π − α. (6.22)

The formula α∗ = π−A is obtained by applying Eq. 6.22 to the dual triangles.
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Corollary 6.5.6

With the notation in Proposition 6.5.3, we have

cosA =
cosα+ cosβ cos γ

sinβ sin γ
,

together with two similar formulas obtained by making the permutations A →

B → C → A, α → β → γ → α.

Proof

Just apply part (i) of Proposition 6.5.3 to the dual triangle and use Proposi-

tion 6.5.5.

This formula is important because it shows that the sides of a spherical

triangle are determined by its angles, unlike the situation in plane geometry in

which there are ‘similar’ triangles with the same angles but possibly different

sizes. The ‘reason’ for this is that in spherical geometry there is an absolute

standard of length, namely the radius of the sphere.

Much of Euclidean geometry is concerned with the question of when two

geometrical figures (such as triangles) are congruent, which means that one

figure can be ‘moved’ so that it coincides with the other. The types of ‘mo-

tions’ that are allowed are those that do not change the size or shape of the

triangles, namely the isometries of the plane (see Appendix 1). Hence, we need

to determine the isometries of the sphere.

We know that any isometry of R3 that preserves S2 will give an isometry

of S2 (see Exercise 6.1.2). The following proposition shows that we get all the

isometries of S2 this way (cf. Theorem A.1.5 and its proof).

Proposition 6.5.7

Every isometry of S2 is a composite of reflections in planes passing through

the origin. In fact, at most three reflections are required.

Proof

The first thing to observe is that isometries of S2 must take great circles to great

circles, since these are the curves of shortest length and isometries preserve

length.

Let F be any isometry of S2, and let e1 = (1, 0, 0), e2 = (0, 1, 0) and

e3 = (0, 0, 1). If F (e1) = e1 let G1 be the identity map. Otherwise, let G1 be
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the reflection in the plane perpendicular to the line joining e1 to F (e1) and

passing through its mid-point; note that since ‖ e1 ‖= ‖ F (e1) ‖, this plane

passes through the origin so G1 is an isometry of S2. Then G1 ◦ F fixes e1. If

e2 = G1(F (e2)) let G2 be the identity map. Otherwise, let G2 be the reflection

in the perpendicular bisector of the line joining e2 and G1(F (e2)). Since ‖ e2 ‖

= ‖ G1(F (e2)) ‖ (because F and G1 are isometries), this plane passes through

the origin so G2 is an isometry of S2, and since

‖ e1 −G1(F (e2)) ‖= ‖ G1(F (e1))−G1(F (e2)) ‖= ‖ e1 − e2 ‖,

e1 is fixed by G2. Hence, G2 ◦G1 ◦F fixes e1 and e2. Now the north and south

poles ±e3 are the only two points whose spherical distance from e1 and e2 is

equal to π/2, so G2 ◦ G1 ◦ F must either fix e3 or take it to −e3. In the first

case let G3 be the identity, in the second let G3 be reflection in the xy-plane.

Then, H = G3 ◦G2 ◦G1 ◦ F is an isometry of S2 that fixes e1, e2 and e3.

Since H fixes e1 and e2 it must fix each point of the equator, since the

equator is the unique great circle passing through these two points and any

point on the equator is uniquely determined by its spherical distances from

them. Similarly, H must fix each point of the great circle passing through e1

and e3. If a is any point of S2 other than the poles ±e3, the unique great circle

C passing through a and the poles intersects the equator at a point b, say. Since

H fixes b and the poles, it fixes every point of C by the previous argument. In

particular, H fixes a. Since a was an arbitrary point of the sphere, H must be

the identity map.

Hence, F = G1 ◦G2 ◦G3 is a product of ≤ 3 reflections.

One of the most striking differences between Euclidean and spherical ge-

ometry is contained in the following result, which is strongly suggested by

Corollary 6.5.6.

Proposition 6.5.8

In spherical geometry, similar triangles are congruent.

This means that if two spherical triangles have vertices a,b, c and a′,b′, c′,

and if the angle of the first triangle at a is equal to that of the second triangle

at a′, and similarly for the other two angles, there is an isometry of S2 that

takes a to a′, b to b′ and c to c′. We leave the proof to Exercise 6.5.2.
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EXERCISES

6.5.1 Find the angles and the lengths of the sides of an equilateral spherical

triangle whose area is one quarter of the area of the sphere.

6.5.2 Show that similar spherical triangles are congruent.

6.5.3 The spherical circle of centre p ∈ S2 and radius R is the set of

points of S2 that are a spherical distance R from p. Show that, if

0 ≤ R ≤ π/2:

(i) A spherical circle of radius R is a circle of radius sinR.

(ii) The area inside a spherical circle of radius R is 2π(1− cosR).

What if R > π/2?

6.5.4 This exercise describes the transformations of C∞ corresponding to

the isometries of S2 under the stereographic projection map Π :

S2 → C∞ (Example 6.3.5). If F is any isometry of S2, let F∞ =

Π ◦ F ◦Π−1 be the corresponding bijection C∞ → C∞.

(i) A Möbius transformation

M(w) =
aw + b

cw + d
,

where a, b, c, d ∈ C and ad−bc �= 0, is said to be unitary if d = ā

and c = −b̄ (see Appendix 2). Show that the composite of two

unitary Möbius transformations is unitary and that the inverse

of a unitary Möbius transformation is unitary.

(ii) Show that if F is the reflection in the plane passing through the

origin and perpendicular to the unit vector (a, b) (where a ∈ C,

b ∈ R – see Example 5.3.4), then

F∞(w) =
−aw̄ + b

bw̄ + ā
.

(iii) Deduce that if F is any isometry of S2 there is a unitary Möbius

transformation M such that either F∞ = M or F∞ = M ◦ J

where J(w) = −w̄.

(iv) Show conversely that if M is any unitary Möbius transforma-

tion, the bijections C∞ → C∞ given by M and M ◦ J are both

of the form F∞ for some isometry F of S2.



7
Curvature of surfaces

In this chapter, we discuss several approaches to the problem of measuring

how ‘curved’ a surface is. Although they use quite different methods, we show

that each of the approaches leads to the same geometric object: the second

fundamental form of a surface. It turns out (see Theorem10.1.3) that a surface

is determined up to an isometry of R3 by its first and second fundamental

forms, just as a unit-speed plane curve is determined up to an isometry of R2

by its signed curvature.

Throughout this chapter we shall work with oriented surfaces. Recall from

Section 4.5 that every surface patch is oriented.

7.1 The second fundamental form

In our first attempt to define the curvature of a surface, we imitate the dis-

cussion at the beginning of Section 2.1, which leads to the definition of the

curvature of a curve. Suppose then that σ is a surface patch in R3 with stan-

dard unit normal N. As the parameters (u, v) of σ change to (u+∆u, v+∆v),

the surface moves away from the plane through σ(u, v) parallel to the tangent

plane by a distance

(σ(u+∆u, v +∆v) − σ(u, v)) ·N.
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¾(u; Δu; v + Δu)

¾(u; v)

N

By the two variable form of Taylor’s theorem, σ(u +∆u, v +∆v) − σ(u, v) is

equal to

σu∆u+ σv∆v +
1

2

(

σuu(∆u)2 + 2σuv∆u∆v + σvv(∆v)2
)

+ remainder,

where (remainder)/((∆u)2 + (∆v)2) tends to zero as (∆u)2 + (∆v)2 tends to

zero. Now σu and σv are tangent to the surface, hence perpendicular to N, so

the deviation of σ from its tangent plane is

1

2

(

L(∆u)2 + 2M∆u∆v +N (∆v)2
)

+ remainder, (7.1)

where

L = σuu ·N, M = σuv ·N, N = σvv ·N. (7.2)

Comparing Eq. 7.2 with Eq. 7.1, we see that the expression

L(∆u)2 + 2M∆u∆v +N (∆v)2

is the analogue for the surface of the curvature term κ(∆t)2 in the case of a

curve.

One calls the expression

Ldu2 + 2Mdudv +Ndv2 (7.3)

the second fundamental form of the surface patch σ. It clearly resembles the first

fundamental form of a surface patch, and we can make sense of it in the same

way, by interpreting du and dv as linear maps as in Section 6.1. Imitating the

discussion there, we define a symmetric bilinear form on the tangent plane by

〈〈v,w〉〉 = Ldu(v)du(w) +M(du(v)dv(w) + du(w)dv(v)) +Ndv(v)dv(w)

(cf. Exercise 6.1.3). In the next section, we shall give this form an appealing geo-

metric interpretation, and extend its definition to an arbitrary oriented surface.
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Example 7.1.1

Consider the plane

σ(u, v) = a+ up+ vq

(see Example 4.1.2). Since σu = p and σv = q are constant vectors, we have

σuu = σuv = σvv = 0. Hence, the second fundamental form of a plane is zero.

Example 7.1.2

Consider a surface of revolution (Example 5.3.2)

σ(u, v) = (f(u) cos v, f(u) sin v, g(u));

we assume as usual that f(u) > 0 for all values of u and that the profile curve

u �→ (f(u), 0, g(u)) is unit-speed, i.e., ḟ2+ ġ2 = 1 (a dot denoting d/du). Then:

σu = (ḟ cos v, ḟ sin v, ġ), σv = (−f sin v, f cos v, 0),

∴ σu × σv = (−f ġ cos v,−f ġ sin v, f ḟ),

∴ ‖ σu × σv ‖= f (since ḟ2 + ġ2 = 1),

∴ N =
σu × σv

‖ σu × σv ‖ = (−ġ cos v,−ġ sin v, ḟ),

σuu = (f̈ cos v, f̈ sin v, g̈),

σuv = (−ḟ sin v, ḟ cos v, 0),

σvv = (−f cos v,−f sin v, 0),

∴ L = σuu ·N = ḟ g̈ − f̈ ġ, M = σuv ·N = 0, N = σvv ·N = f ġ,

so the second fundamental form is

(ḟ g̈ − f̈ ġ)du2 + f ġdv2.

For the unit sphere S2 in latitude–longitude coordinates (Example 4.1.4),

u = θ, v = ϕ, f(θ) = cos θ, g(θ) = sin θ, giving the second fundamental form

of S2 as

dθ2 + cos2 θ dϕ2.

Note that this is the same as the first fundamental form of S2 (see

Example 6.1.3; the reason for this will appear in Section 8.2).

If the surface is the unit cylinder, we can take f(u) = 1, g(u) = u (again, the

conditions f > 0 and ḟ2+ ġ2 = 1 are satisfied). This gives L = M = 0, N = 1,

so the second fundamental form of the cylinder is dv2.
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EXERCISES

7.1.1 Compute the second fundamental form of the elliptic paraboloid

σ(u, v) = (u, v, u2 + v2).

7.1.2 Suppose that the second fundamental form of a surface patch σ is

zero everywhere. Prove that σ is an open subset of a plane. This

is the analogue for surfaces of the theorem that a curve with zero

curvature everywhere is part of a straight line.

7.1.3 Let a surface patch σ̃(ũ, ṽ) be a reparametrization of a surface patch

σ(u, v) with reparametrization map (u, v) = Φ(ũ, ṽ). Prove that

(

L̃ M̃

M̃ Ñ

)

= ±J t

(

L M

M N

)

J,

where J is the Jacobian matrix of Φ and we take the plus sign

if det(J) > 0 and the minus sign if det(J) < 0. Deduce from

Exercise 6.1.4 that the second fundamental form of a surface patch

is unchanged by a reparametrization of the patch which preserves

its orientation.

7.1.4 What is the effect on the second fundamental form of a surface of

applying an isometry of R3? Or a dilation?

7.2 The Gauss and Weingarten maps

Our second approach to defining the curvature of an oriented surface S is to

consider its unit normal N. The way that N varies clearly reflects the way in

which S curves: N varies rapidly near a point at which the surface is highly

curved and slowly where the surface is only slightly curved. If S is a plane, N

is the same at all points of S, i.e., N is a constant, and the curvature should

be zero.

The values of N at the points of S are recorded by its Gauss map GS (or

just G if there is no doubt as to which surface is intended). This is the map from

S to the unit sphere S2 that assigns to any point p ∈ S the point Np ∈ S2,

where Np is the unit normal of S at p.
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N(u; v)

N(u; v)

¾(u; v)

O

G

The rate at which N varies across S is measured by the derivative of G :

DpG : TpS → TG(p)S
2.

Now, the tangent plane at a point q ∈ S2 is the plane passing through the origin

perpendicular to q. Thus, TG(p)S
2 is the plane through the origin perpendicular

to Np, in other words, TpS. Thus, the derivative of G is a linear map from the

tangent plane of S to itself:

DpG : TpS → TpS.

Definition 7.2.1

Let p be a point of a surface S. The Weingarten map Wp,S of S at p is defined

by

Wp,S = −DpG. (7.4)

The second fundamental form of S at p ∈ S is the bilinear form on TpS given

by
〈〈v,w〉〉p,S = 〈Wp,S(v),w〉p,S , v,w ∈ TpS.

The minus sign is introduced in Eq. 7.4 as a matter of convention (it will

reduce the total number of minus signs later). We shall often omit the subscripts

p and S from the Weingarten map if there is no danger of confusion.

The bilinearity asserted in this definition is easy to check. Let v1,v2,w ∈
TpS, λ1, λ2 ∈ R. Then,

〈〈λ1v1 + λ2v2,w〉〉 = 〈W(λ1v1 + λ2v2),w〉
= 〈λ1W(v1) + λ2W(v2),w〉
= λ1〈W(v1),w〉+ λ2〈W(v2),w〉
= λ1〈〈v1,w〉〉+ λ2〈〈v2,w〉〉,
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where we used the linearity of W in passing from the first line to the second

and the bilinearity of 〈 , 〉 in passing from the second line to the third. This

proves that 〈〈v,w〉〉 is a linear function of v for each fixed w. The proof that

it is linear in w for each fixed v is similar but easier.

Proposition 7.2.2

Let p be a point of a surface S, let σ(u, v) be a surface patch of S with p in

its image, and let Ldu2 + 2Mdudv+Ndv2 be the second fundamental form of

σ defined in Section 7.1. Then, for any v,w ∈ TpS,

〈〈v,w〉〉 = Ldu(v)du(w) +M(du(v)dv(w) + du(w)dv(v)) +Ndv(v)dv(w).

(7.5)

To prove this we shall need the following lemma, which will also be used

elsewhere.

Lemma 7.2.3

Let σ(u, v) be a surface patch with standard unit normal N(u, v). Then,

Nu · σu = −L, Nu · σv = Nv · σu = −M, Nv · σv = −N,

where L,M and N are as defined in Eq. 7.2.

Proof

Since σu and σv are tangent vectors to the surface patch,

N · σu = N · σv = 0.

Differentiating these equations with respect to u and v gives

Nu · σu = −N · σuu = −L, Nv · σu = −N · σuv = −M,

Nu · σv = −N · σuv = −M, Nv · σv = −N · σvv = −N.

Proof 7.2.2 Since both sides of the equation in the statement of the proposition

define bilinear forms on TpS, it su ffi c e s to verify that they agree when v and

w are σu or σv. Recalling that du(σu) = dv(σv) = 1, du(σv) = dv(σu) = 0,

we have to prove that

〈〈σu,σu〉〉 = L, 〈〈σu,σv〉〉 = 〈〈σv,σu〉〉 = M, 〈〈σv,σv〉〉 = N. (7.6)
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Let σ(u0, v0) = p. Then, with the derivatives evaluated at (u0, v0),

W (σu) = − d

du

∣

∣

∣

∣

u=u0

G(σ(u, v0)) = − d

du

∣

∣

∣

∣

u=u0

N(u, v0) = −Nu,

where N is the standard unit normal of σ. Similarly, W(σv) = −Nv. Hence,

〈〈σu,σu〉〉 = 〈W(σu),σu〉 = −Nu · σu,

which is equal to L by Lemma 7.2.3. The other equations in (7.6) are proved

similarly.

Since the formula (7.5) for 〈〈v,w〉〉 is obviously unchanged when v and w

are interchanged, we obtain

Corollary 7.2.4

The second fundamental form is a symmetric bilinear form. Equivalently, the

Weingarten map is self-adjoint.

EXERCISES

7.2.1 Calculate the Gauss map G of the paraboloid S with equation

z = x2 + y2. What is the image of G?

7.2.2 Show that the Weingarten map changes sign when the orientation

of the surface changes.

7.3 Normal and geodesic curvatures

It is obvious that the shape of a surface influences the curvature of curves on the

surface. For example, a curve on a plane or a cylinder can have zero curvature

everywhere, but this is not possible for curves on a sphere since no segment of

a straight line can lie on a sphere. Thus, another natural way to investigate

how much a surface curves is to look at the curvature of curves on the surface.

We shall see that this leads, once again, to the second fundamental form of the

surface.
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If γ is a unit-speed curve on an oriented surface S, then γ̇ is a unit vector

and is, by definition, a tangent vector to S. Hence, γ̇ is perpendicular to the

unit normal N of S, so γ̇, N and N × γ̇ are mutually perpendicular unit

vectors. Again since γ is unit-speed, γ̈ is perpendicular to γ̇, and hence is a

linear combination of N and N× γ̇:

γ̈ = κnN+ κgN× γ̇. (7.7)

Definition 7.3.1

The scalars κn and κg in Eq. 7.7 are called the normal curvature and the

geodesic curvature of γ, respectively.

Note that κn and κs both change sign when N is replaced by −N, so on a

general (not necessarily orientable) surface only the magnitudes of κn and κs

are well defined.

Proposition 7.3.2

With the above notation, we have

κn = γ̈ ·N, κg = γ̈ · (N× γ̇), (7.8)

κ2 = κ2
n + κ2

g, (7.9)

κn = κ cosψ, κg = ±κ sinψ, (7.10)
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where κ is the curvature of γ and ψ is the angle between N and the principal

normal n of γ.

Proof

Equations 7.8 and 7.9 follow from Eq. 7.7 and the fact that N and N× γ̇ are

perpendicular unit vectors. The first equation in (7.10) follows from γ̈ = κn,

and the second then follows from Eq. 7.9.

If γ is regular, but not necessarily unit-speed, we define the geodesic and

normal curvatures of γ to be those of a unit-speed reparametrization of γ

(see Exercise 7.3.1). When a unit-speed parameter t is changed to another such

parameter ±t+c, where c is a constant, it is clear that κn �→ κn and κg �→ ±κg,

so κn is well defined for any regular curve, while κg is well defined up to sign.

Equations 7.9 and 7.10 continue to hold if γ is any regular curve.

The following proposition is the most important single fact about the normal

curvature, and reveals its relation to the second fundamental form 〈〈 , 〉〉.

Proposition 7.3.3

If γ is a unit-speed curve on an oriented surface S, its normal curvature is given

by
κn = 〈〈γ̇, γ̇〉〉.

If σ is a surface patch of S and γ(t) = σ(u(t), v(t)) is a curve in σ,

κn = Lu̇2 + 2Mu̇v̇ +Nv̇2

in the notation of Section 7.1.

This result means that two curves which touch each other at a point p of a

surface (i.e., which intersect at p and have parallel tangent vectors at p) have

the same normal curvature at p.

Proof

Since γ̇ is a tangent vector to S, N.γ̇ = 0. Hence, N · γ̈ = −Ṅ · γ̇ so

κn = N · γ̈ = −Ṅ · γ̇ = 〈W(γ̇), γ̇〉 = 〈〈γ̇, γ̇〉〉,

since

Ṅ =
d

dt
G(γ(t)) = −W(γ̇).

The second part follows from the first and Proposition 7.2.2.
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It turns out that, while the normal curvature depends on the second funda-

mental form of the surface, the geodesic curvature κg depends only on its first

fundamental form (see Exercise 7.3.4). But we leave further discussion of κg to

Chapter 9.

Here is a classical application of Proposition 7.3.3. It takes almost as long

to state as to prove.

Proposition 7.3.4 (Meusnier’s Theorem)

Let p be a point of a surface S and let v be a unit tangent vector to S at p.

Let Πθ be the plane containing the line through p parallel to v and making

an angle θ with the tangent plane TpS, and assume that Πθ is not parallel to

TpS. Suppose that Πθ intersects S in a curve with curvature κθ. Then, κθ sin θ

is independent of θ.

°µ

Πµ

P

µ

S

v

Proof

Assume that γθ is a unit-speed parametrization of the curve of intersection of

Πθ and S. Then, at p, γ̇θ = ±v, so γ̈θ is perpendicular to v and is parallel to

Πθ. Thus, in the notation of Proposition 7.3.2, ψ = π/2−θ and so Eq. 7.10 gives
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κθ sin θ = κn.

But κn depends only on p and v, and not on θ.

An important special case is that in which γ is a normal section of the sur-

face, i.e., γ is the intersection of the surface with a plane Π that is perpendicular

to the tangent plane of the surface at every point of γ.

Corollary 7.3.5

The curvature κ, normal curvature κn and geodesic curvature κg of a normal

section of a surface are related by

κn = ±κ, κg = 0.

Proof

As in the proof of Proposition 7.3.3, κn = κ sin θ, where θ = ±π/2 for a normal

section. This gives the first equation; the second follows from it and Eq. 7.9.

EXERCISES

7.3.1 Let γ be a regular, but not necessarily unit-speed, curve on a sur-

face. Prove that (with the usual notation) the normal and geodesic

curvatures of γ are

κn =
〈〈γ̇, γ̇〉〉
〈γ̇, γ̇〉 and κg =

γ̈ · (N× γ̇)

〈γ̇, γ̇〉3/2 .

7.3.2 Show that the normal curvature of any curve on a sphere of radius

r is ±1/r.

7.3.3 Compute the geodesic curvature of any circle on a sphere (not nec-

essarily a great circle).

7.3.4 Show that, if γ(t) = σ(u(t), v(t)) is a unit-speed curve on a surface

patch σ with first fundamental form Edu2 + 2Fdudv + Gdv2, the

geodesic curvature of γ is

κg = (v̈u̇− v̇ü)
√

EG− F 2 +Au̇3 +Bu̇2v̇ + Cu̇v̇2 +Dv̇3,

where A, B, C and D can be expressed in terms of E, F , G and

their derivatives. Find A,B,C,D explicitly when F = 0.
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7.3.5 Suppose that a unit-speed curve γ with curvature κ > 0 and princi-

pal normal n is a parametrization of the intersection of two oriented

surfaces S1 and S2 with unit normals N1 and N2. Show that, if κ1

and κ2 are the normal curvatures of γ when viewed as a curve in S1

and S2, respectively, then

κ1N2 − κ2N1 = κ(N1 ×N2)× n.

Deduce that, if α is the angle between the two surfaces,

κ2 sin2 α = κ2
1 + κ2

2 − 2κ1κ2 cosα.

7.3.6 A curve γ on a surface S is called asymptotic if its normal curvature

is everywhere zero. Show that any straight line on a surface is an

asymptotic curve. Show also that a curve γ with positive curvature

is asymptotic if and only if its binormal b is parallel to the unit

normal of S at all points of γ.

7.3.7 Prove that the asymptotic curves on the surface

σ(u, v) = (u cos v, u sin v, ln u)

are given by

lnu = ±(v + c),

where c is an arbitrary constant.

7.4 Parallel transport and covariant derivative

Imagine that there is a road that runs along the Earth’s equator and that you

are driving along this road at constant speed. The road would appear perfectly

straight – you would not have to turn to the right or left to continue along

the road. Thus, you would perceive your velocity (and not just your speed)

as being constant. On the other hand, an observer in space would see that

your velocity is not constant as you are travelling in a circle rather than in

a straight line. The resolution of this apparent paradox is that an observer

restricted to the surface of the Earth perceives only the component of the

acceleration tangential to the surface. From the point of view of the observer

in space, the acceleration vector points towards the centre of the Earth, and so

has zero tangential component.

In general, suppose that γ is a curve on a surface S and let v be a tangent

vector field along γ, i.e., a smooth map from an open interval (α, β) to R3 such
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that v(t) ∈ Tγ(t)S for all t ∈ (α, β). To an observer moving along the curve γ,

the perceived rate of change of v is the tangential component of v̇, i.e., the

orthogonal projection of v̇ = dv/dt onto Tγ(t)S. If N is a unit normal to σ,

the component of v̇ perpendicular to the surface is (v̇ ·N)N, so the tangential

component is
∇γv = v̇− (v̇ ·N)N. (7.11)

Note that this is unchanged if N is replaced by −N, so ∇γv is well defined on

any surface, orientable or not.

.
N

v

v

v

v

v

v

D

gv

Definition 7.4.1

Let γ be a curve on a surface S and let v be a tangent vector field along γ. The

covariant derivative of v along γ is the orthogonal projection ∇γv of dv/dt

onto the tangent plane Tγ(t)S at a point γ(t).

In particular, an inhabitant of S would perceive v as being constant along

γ if ∇γv = 0. In this case, v is sometimes said to be covariant constant, but

the usual terminology is contained in

Definition 7.4.2

With the notation in Definition 7.4.1, v is said to be parallel along γ if ∇γv = 0

at every point of γ.

Proposition 7.4.3

A tangent vector field v is parallel along a curve γ on a surface S if and only

if v̇ is perpendicular to the tangent plane of S at all points of γ.
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Proof

This is clear from the definitions: if the right-hand side of Eq. 7.11 is zero, then

v̇ is obviously parallel to N. Conversely, if v̇ = λN for some scalar λ, then

∇γv = v̇− (λN ·N)N = v̇− λN = 0.

To establish the existence of parallel tangent vector fields, we shall express

the covariant derivative in terms of the parameters u, v of a parametrization σ

of the surface. To do this, we shall need the following calculation, which will

also be used later.

Proposition 7.4.4 (Gauss Equations)

Let σ(u, v) be a surface patch with first and second fundamental forms

Edu2 + 2Fdudv +Gdv2 and Ldu2 + 2Mdudv +Ndv2.

Then,

σuu =Γ1
11σu + Γ2

11σv + LN,

σuv =Γ1
12σu + Γ2

12σv +MN,

σvv =Γ1
22σu + Γ2

22σv +NN,

where

Γ1
11 =

GEu − 2FFu + FEv

2(EG− F 2)
, Γ2

11 =
2EFu − EEv − FEu

2(EG− F 2)
,

Γ1
12 =

GEv − FGu

2(EG− F 2)
, Γ2

12 =
EGu − FEv

2(EG− F 2)
,

Γ1
22 =

2GFv −GGu − FGv

2(EG− F 2)
, Γ2

22 =
EGv − 2FFv + FGu

2(EG− F 2)
.

The six Γ coefficients in these formulas are called Christoffel symbols. Note

that they depend only on the first fundamental form of σ.

Proof

Since {σu,σv,N} is a basis of R3, scalar functions α1, . . . , γ3 satisfying

σuu = α1σu + α2σv + α3N,

σuv = β1σu + β2σv + β3N, (7.12)

σvv = γ1σu + γ2σv + γ3N,
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certainly exist. Taking the dot product of each equation with N gives

α3 = L, β3 = M, γ3 = N.

Now we take the dot product of each equation in (7.12) with σu and σv.

This gives six scalar equations from which we determine the remaining six

coefficients. For example, taking the dot product of the first equation in (7.12)

with σu and σv gives the two equations

Eα1 + Fα2 = σuu · σu =
1

2
Eu,

Fα1 +Gα2 = σuu · σv = (σu · σv)u − σu · σuv = Fu − 1

2
Ev.

Solving these equations gives α1 = Γ1
11, α2 = Γ2

11; similarly for the other four

coefficients in Eq. 7.12.

We can now establish the conditions for a tangent vector field v to be

parallel along a curve γ(t) = σ(u(t), v(t)) on a surface patch σ(u, v). Since

the tangent plane of σ is spanned by the vectors σu and σv, there are smooth

scalar functions α and β such that

v(t) = α(t)σu + β(t)σv,

the derivatives of σ being evaluated at σ(u(t), v(t)).

Proposition 7.4.5

Let γ(t) = σ(u(t), v(t)) be a curve on a surface patch σ, and let v(t) = α(t)σu+

β(t)σv be a tangent vector field along γ, where α and β are smooth functions of

t. Then, v is parallel along γ if and only if the following equations are satisfied:

α̇+ (Γ1
11u̇+ Γ1

12v̇)α+ (Γ1
12u̇+ Γ1

22v̇)β = 0

β̇ + (Γ2
11u̇+ Γ2

12v̇)α+ (Γ2
12u̇+ Γ2

22v̇)β = 0.
(7.13)

Note that these equations involve only the first fundamental form of σ.

Proof

Using the Gauss equations, we have

v̇ = α̇σu + β̇σv + αu̇(Γ1
11σu + Γ2

11σv + LN) (7.14)

+ (αv̇ + βu̇)(Γ1
12σu + Γ2

12σv +MN) + βv̇(Γ1
22σu + Γ2

22σv +NN).
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By Proposition 7.4.3, v is parallel along γ if and only if v̇ is parallel toN, which

means that the coefficients of σu and σv on the right-hand side of Eq. 7.14

must both be zero. But these coefficients are the left-hand sides of the two

equations in (7.13).

Eqs. (7.13) are of the form

α̇ = f(α, β, t), β̇ = g(α, β, t), (7.15)

where f and g are smooth functions of three variables. It is proved in the theory

of ordinary differential equations that such equations have a unique solution

for any given set of initial conditions, i.e., if t0 is some particular value of t,

and α0, β0 ∈ R, there are unique smooth functions α(t) and β(t), defined on

an open interval containing t0, that satisfy Eq. 7.16 and are such that

α(t0) = α0, β(t0) = β0. (7.16)

In the situation considered in Proposition 7.4.5, the initial conditions (7.16)

are equivalent to

v(t0) = α0σu + β0σv.

So we obtain

Corollary 7.4.6

Let γ be a curve on a surface S and let v0 be a tangent vector of S at the point

γ(t0). Then, there is exactly one tangent vector field v that is parallel along γ

and is such that v(t0) = v0.

Example 7.4.7

Take γ to be a circle of latitude θ = θ0 (−π/2 < θ0 < π/2) on the unit

sphere with the latitude–longitude parametrization σ(θ, ϕ) (Example 4.1.4);

thus, γ(ϕ) = σ(θ0, ϕ). The first fundamental form of σ is dθ2 + cos2 θdϕ2

(Example 6.1.3) from which we find

Γ1
11 = Γ2

11 = Γ2
22 = Γ1

12 = 0, Γ2
12 = − tan θ, Γ1

22 = sin θ cos θ.

The differential equations (7.13) become

α̇ = −β sin θ0 cos θ0, β̇ = α tan θ0. (7.17)

If θ0 = 0, then α and β are constant. If θ0 	= 0, eliminating β gives

α̈+ α sin2 θ0 = 0,
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which has the general solution

α(ϕ) = A cos(ϕ sin θ0) + B sin(ϕ sin θ0),

where A and B are constants; the second equation in (7.17) now gives

β = A
sin(ϕ sin θ0)

cos θ0
−B

cos(ϕ sin θ0)

sin θ0
.

Let us consider the special case in which v = σϕ is tangent to γ when

ϕ = 0. Then, α = 0, β = 1 when ϕ = 0, which gives A = 0, B = − sin θ0 and

hence
v(ϕ) = − sin θ0 sin(ϕ sin θ0)σθ + cos(ϕ sin θ0)σϕ

(this solution is also correct when θ0 = 0). Note that v(ϕ) is not tangent to γ

at γ(ϕ) in general. However, if θ0 = 0 then v is tangent to γ for all ϕ. Thus,

the tangent vector of γ is parallel along γ if and only if γ is a great circle. We

shall see the reason for this in Section 9.1.

If p and q are two points on a curve γ on a surface S, the covariant derivative
enables us to associate to any vector in the tangent plane TpS a vector in the

tangent plane TqS. Indeed, suppose that p and q correspond to the parameter

values t0 and t1, let v0 ∈ TpS, let v(t) be the unique parallel vector field along

γ such that v(t0) = v0 (see Corollary 7.4.6), and let v1 = v(t1) ∈ TqS.

Definition 7.4.8

With the above notation, the map Πpq
γ : TpS → TqS that takes v0 ∈ TpS to

v1 ∈ TqS is called parallel transport from p to q along γ.

Proposition 7.4.9

With the notation in Definition 7.4.8,

(i) Πpq
γ : TpS → TqS is a linear map

(ii) Πpq
γ is an isometry, i.e., it preserves lengths and angles.

Proof

Let v0, w0 ∈ TpS and let λ, µ ∈ R. Let v(t), w(t) be the parallel vector fields

along γ such that v(t0) = v0, w(t0) = w0. If V = λv+µw, then V̇ = λv̇+µẇ

is parallel to the unit normal N of S because v̇ and ẇ are parallel to N, so V

is parallel along γ. Hence,

Πpq
γ (λv0+µw0) = Πpq

γ (V(t0)) = V(t1) = λv1+µw1 = λΠpq
γ (v0)+µΠpq

γ (w0),
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which proves that Πpq
γ is linear.

For (ii), note that

d

dt
(v ·w) = v̇ ·w+ v · ẇ = ((v̇ ·N)N) ·w+ v · ((ẇ ·N)N) = 0,

since v ·N = w ·N = 0 (v and w are tangent to the surface). Hence,

v0 ·w0 = v1 ·w1.

Thus, Πpq
γ preserves dot products of vectors. Since lengths and angles are

expressible in terms of dot products, part (ii) is proved.

Example 7.4.10

Take γ to be the equator of S2. We saw in Example 7.4.7 that the tangent

vector σϕ of γ is parallel along γ. Now, at points of the equator, σθ is a unit

vector perpendicular to σϕ. By Proposition 7.4.9, the parallel vector field along

γ equal to σθ when ϕ = 0 has the same property. It must therefore be equal to

σθ; in other words, σθ is also parallel along γ (this can also be checked directly

from the formulas in Example 7.4.7). Since parallel transport is a linear map,

it follows that, for any two points p and q on the equator, and any λ, µ ∈ R,

Πpq
γ (λσθ + µσϕ) = λσθ + µσϕ. (7.18)

(Note, however, that Πpq
γ is not the identity map unless p and q coincide ! If

p 	= q the derivatives σθ and σϕ on the two sides of (7.18) are being evaluated

at different points of S2.)

EXERCISES

7.4.1 Let γ̃ be a reparametrization of γ, so that γ̃(t) = γ(ϕ(t)) for some

smooth function ϕ with dϕ/dt 	= 0 for all values of t. If v is a tangent

vector field along γ, show that ṽ(t) = v(ϕ(t)) is one along γ̃. Prove

that

∇γ̃ ṽ =
dϕ

dt
∇γv,

and deduce that v is parallel along γ if and only if ṽ is parallel

along γ̃.

7.4.2 Show that the parallel transport map Πpq
γ : TpS → TqS is invertible.

What is its inverse?
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7.4.3 Suppose that a triangle on the unit sphere whose sides are arcs

of great circles has vertices p, q, r. Let v0 be a non-zero tangent

vector to the arc pq through p and q at p. Show that, if we parallel

transport v0 along pq, then along qr and then along rp, the result

is to rotate v0 through an angle 2π −A, where A is the area of the

triangle. For an analogous result see Theorem13.6.4.



8
Gaussian, mean and principal curvatures

In this chapter, we show how to extract geometric information from the second

fundamental form of a surface or, equivalently, from its Weingarten map.

8.1 Gaussian and mean curvatures

We start by defining two new measures of the curvature of a surface.

Definition 8.1.1

Let W be the Weingarten map of an oriented surface S at a point p ∈ S. The
Gaussian curvature K and mean curvature H of S at p are defined by

K = det(W), H =
1

2
trace(W).

Recall that the determinant and trace of a linear map (such as W) can be

computed as the determinant and the sum of the diagonal entries of the matrix

of the linear map with respect to any basis (in this case of the tangent plane),

and that they depend only on the linear map and not on the choice of basis.

When the sign of the unit normal of S is changed, the Weingarten map also

changes sign (Exercise 7.2.2), thus leaving K unchanged. This implies that the

Gaussian curvature is defined for any surface S, orientable or not: to define

K at a point p ∈ S, choose a surface patch σ with p in its image; this is an

Andrew Pressley, Elementary Differential Geometry: Second Edition, 179
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-891-9 8,
c© Springer-Verlag London Limited 2010
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oriented surface, which may be used to define K, and the result is independent

of the choice of σ. On the other hand, on a surface that is not necessarily

orientable, H is in general only well defined up to sign.

To get explicit formulas for H and K, we work in a surface patch of S. Let

σ(u, v) be a surface patch with first and second fundamental forms

Edu2 + 2Fdudv +Gdv2 and Ldu2 + 2Mdudv +Ndv2,

respectively. Define symmetric 2× 2 matrices FI and FII by

FI =

(

E F

F G

)

, FII =

(

L M

M N

)

.

Proposition 8.1.2

Let σ be a surface patch of an oriented surface S. Then, with the above nota-

tion, the matrix of Wp,S with respect to the basis {σu,σv} of TpS is F−1
I FII .

Proof

By the proof of Proposition 7.2.2, W(σu) = −Nu and W(σv) = −Nv, so the

matrix of W is

(

a c

b d

)

, where

−Nu = aσu + bσv, −Nv = cσu + dσv.

Take the dot product of each of these equations with σu and σv and use

Lemma 7.2.3; this gives

L = aE + bF, M = cE + dF,

M = aF + bG, N = cF + dG.

These four scalar equations are equivalent to the single matrix equation

(

L M

M N

)

=

(

E F

F G

)(

a c

b d

)

i.e., FII = FI

(

a c

b d

)

.

Hence, the matrix of W with respect to the basis {σu,σv} is

(

a c

b d

)

= F−1
I FII .
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Corollary 8.1.3

We have

H =
LG− 2MF + NE

2(EG− F 2)
, K =

LN −M2

EG− F 2
.

Proof

By Definition 8.1.1,

K = det
(

F−1
I FII

)

=
det(FII)

det(FI)
=

LN −M2

EG− F 2
.

To compute H, we need the trace of the matrix

F−1
I FII =

1

EG− F 2

(

G −F

−F E

)(

L M

M N

)

=
1

EG− F 2

(

LG −MF MG − NF

ME − LF NE −MF

)

.

Thus,

2H = trace
(

F−1
I FII

)

=
LG− 2MF + NE

EG − F 2
.

Example 8.1.4

In Examples 6.1.3 and 7.1.2 we considered the surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

where we can assume that f > 0 and ḟ2 + ġ2 = 1 everywhere (a dot denoting

d/du). We found that

E = 1, F = 0, G = f2, L = ḟ g̈ − f̈ ġ, M = 0, N = f ġ.

By Corollary 8.1.3, the Gaussian curvature is

K =
LN −M2

EG− F 2
=

(ḟ g̈ − f̈ ġ)f ġ

f2
.

We can simplify this formula by noting that ḟ2 + ġ2 = 1 implies (by differenti-

ating with respect to u) that ḟ f̈ + ġg̈ = 0,

∴ (ḟ g̈ − f̈ ġ)ġ = −ḟ2f̈ − f̈ ġ2 = −f̈(ḟ2 + ġ2) = −f̈ ,

∴ K = −
f̈f

f2
= −

f̈

f
.
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We consider some special cases. If γ(u) = (u, 0, 0) is the x-axis, the

corresponding surface of revolution is the xy-plane; since f(u) = u, we have

ḟ = 1, f̈ = 0, so K = 0. If γ(u) = (1, 0, u) is a straight line parallel to the

z-axis, the corresponding surface is the unit cylinder; since f(u) = 1, f̈ = 0, so

K = 0. Finally, if γ(u) = (cos u, 0, sinu) is a circle of radius 1, the correspond-

ing surface is the unit sphere; since f(u) = cosu, ḟ = − sinu, f̈ = − cosu so

K = −f̈/f = −(− cosu)/ cosu = 1. Note that in each of these examples the

curve γ is unit-speed.

Example 8.1.5

For a ruled surface, take a patch

σ(u, v) = γ(u) + vδ(u),

(see Example 5.3.1). Denoting d/du by a dot, we have σu = γ̇ + vδ̇, σv = δ,

so

σuv = δ̇, σvv = 0.

Hence, if N = (σu × σv)/ ‖ σu × σv ‖ is the standard unit normal of σ, then

M = σuv ·N = δ̇ ·N and N = 0. So

K =
LN −M2

EG− F 2
=

−(δ̇ ·N)2

EG− F 2
≤ 0,

i.e., the Gaussian curvature of a ruled surface is negative or zero.

Gauss discovered a way to obtain the Gaussian curvature from the Gauss

map itself, rather than from its derivative, the Weingarten map. His result is

an analogue of Proposition 2.2.3, which shows that, if γ is a unit-speed plane

curve, its signed curvature κs = ϕ̇, where ϕ is the angle between its tangent

vector γ̇ and a fixed direction, i.e., the (signed) curvature is the rate of change

of direction of the tangent vector of γ per unit length. The ‘direction’ of the

tangent plane to an oriented surface S is measured by its unit normal N, so we

might expect that a measure of the curvature of σ is the ‘rate of change of N

per unit area’. The values of N at points of S are recorded by the Gauss map

G, so if R is a small region on S containing a point p, we should look at the

ratio
Area(G(R))

Area(R)

in the limit as the region R shrinks down to the point p.

To make this idea precise, we work in a surface patch.
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Theorem 8.1.6

Let σ : U → R3 be a surface patch, let (u0, v0) ∈ U , and let δ > 0 be such that

the closed disc

Rδ = {(u, v) ∈ R
2 | (u− u0)

2 + (v − v0)
2 ≤ δ2}

with centre (u0, v0) and radius δ is contained in U . Then,

lim
δ→0

AN(Rδ)

Aσ(Rδ)
= |K|,

where K is the Gaussian curvature of σ at σ(u0, v0).

Note that a δ with the properties in the statement of the theorem exists

because U is open.

Proof

By Definition 6.4.1,

AN(Rδ)

Aσ(Rδ)
=

∫
Rδ

‖ Nu ×Nv ‖ dudv∫
Rδ

‖ σu × σv ‖ dudv
. (8.1)

In the notation of the proof of Proposition 8.1.2,

Nu ×Nv = (aσu + bσv)× (cσu + dσv)

= (ad− bc)σu × σv

= det(F−1
I FII)σu × σv

=
det(FII)

det(FI)
σu × σv

=
LN −M2

EG− F 2
σu × σv

= Kσu × σv (by Corollary 8.1.3). (8.2)

Substituting in Eq. 8.1, we get

AN(Rδ)

Aσ(Rδ)
=

∫
Rδ

|K| ‖ σu × σv ‖ dudv∫
Rδ

‖ σu × σv ‖ dudv
.

Let ǫ be any positive number. Since K(u, v) is a continuous function of

(u, v) (see Exercise 8.1.3), we can choose δ > 0 so small that

|K(u, v)−K(u0, v0)| < ǫ
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if (u, v) ∈ Rδ. Since, for any real numbers a, b, |a − b| ≥ ||a| − |b||, it follows

that ||K(u, v)| − |K(u0, v0)|| < ǫ if (u, v) ∈ Rδ, i.e.,

|K(u0, v0)| − ǫ < |K(u, v)| < |K(u0, v0)|+ ǫ

if (u, v) ∈ Rδ. Multiplying through by ‖ σu ×σv ‖ and integrating over Rδ, we

get

(|K(u0, v0)| − ǫ)

∫
‖ σu × σv ‖dudv<

∫
|K(u, v)|‖ σu × σv ‖dudv

< (|K(u0, v0)|+ ǫ)

∫
‖ σu × σv ‖dudv,

∴ |K(u0, v0)| − ǫ <
AN(Rδ)

Aσ(Rδ)
< |K(u0, v0)|+ ǫ (using Eq. 8.1)

∴

∣∣∣∣
AN(Rδ)

Aσ(Rδ)
− |K(u0, v0)|

∣∣∣∣ < ǫ.

This proves the theorem.

Although this proposition only gives the absolute value of the Gaussian

curvature K, the sign can be recovered from the Gauss map if we define the

signed area of G(R) to be ±AN(R), where the sign is + or − according to

whether Nu×Nv points in the same or the opposite direction as N. By Eq. 8.3,

this sign is that of K, so K is the limit of the ratio

Signed area(G(R))

Area(R)

as the region R shrinks to the point p.

As the following examples show, Theorem 8.1.6 sometimes allows one to

find the Gaussian curvature of a surface with no calculation.

Example 8.1.7

For a plane, the unit normal is constant. Thus, for any R, G(R) is a single

point, and thus has zero area. By the theorem, a plane has Gaussian curvature

zero everywhere.

For a generalized cylinder, the unit normal is clearly always perpendicular

to the rulings of the cylinder, so the image of the Gauss map is contained in the

great circle on S2 formed by intersecting S2 with the plane passing through its

centre perpendicular to the rulings of the cylinder. Any great circle obviously

has zero area, so the cylinder has zero Gaussian curvature too.

Finally, for the unit sphere S2 itself, the unit normal at a point p is clearly

parallel to the radius vector from the centre of the sphere to p. In other words,
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the Gauss map is the identity map or the antipodal map (depending on the

choice of orientation). Both of these maps are obviously equiareal, so the ab-

solute value of the Gaussian curvature of S2 is 1. In fact, if σ is any surface

patch of S2, we have N = ±σ so with either choice of sign Nu×Nv = σu×σv

is a positive multiple of N and the Gaussian curvature is +1.

EXERCISES

8.1.1 Show that the Gaussian and mean curvatures of the surface z =

f(x, y), where f is a smooth function, are

K =
fxxfyy − f2

xy

(1 + f2
x + f2

y )
2
, H =

(1 + f2
y )fxx − 2fxfyfxy + (1 + f2

x)fyy

2(1 + f2
x + f2

y )
3/2

.

8.1.2 Calculate the Gaussian curvature of the helicoid and catenoid

(Exercises 4.2.6 and 5.3.1).

8.1.3 Show that the Gaussian and mean curvatures of a surface S are

smooth functions on S.

8.1.4 In the notation of Example 8.1.5, show that if δ is the principal

normal n of γ or its binormal b, then K = 0 if and only if γ is

planar.

8.1.5 What is the effect on the Gaussian and mean curvatures of a surface

S if we apply a dilation of R3 to S?

8.1.6 Show that the Weingarten map W of a surface satisfies the quadratic

equation

W2 − 2HW +K = 0,

in the usual notation.

8.1.7 Show that the image of the Gauss map of a generalized cone is a

curve on S2, and deduce that the cone has zero Gaussian curvature.

8.1.8 Let σ : U → R3 be a patch of a surface S. Show that the image

under the Gauss map of the part σ(R) of S corresponding to a

region R ⊆ U has area ∫

R

|K|dAσ,

where K is the Gaussian curvature of S.
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8.1.9 Let S be the torus in Exercise 4.2.5. Describe the parts S+ and S− of

S where the Gaussian curvature K of S is positive and negative,

respectively. Show, without calculation, that
∫

S+

K dA = −

∫

S−

K dA = 4π.

It follows that
∫
SK dA = 0, a result that will be ‘explained’ in

Section 13.4.

8.1.10 Let w(u, v) be a smooth tangent vector field on a surface patch

σ(u, v). This means that

w(u, v) = α(u, v)σu + β(u, v)σv

where α and β are smooth functions of (u, v). Then, if γ(t) =

σ(u(t), v(t)) is any curve on σ, w gives rise to the tangent vec-

tor field w|γ(t) = w(u(t), v(t)) along γ. Let ∇uw be the covariant

derivative of w|γ along a parameter curve v = constant, and define

∇vw similarly. (Note that if σ is the uv-plane, then ∇u and ∇v

become ∂/∂u and ∂/∂v). Show that

∇v(∇uw)−∇u(∇vw) = (wv ·N)Nu − (wu ·N)Nv,

where N is the unit normal of σ. Deduce that, if λ(u, v) is a smooth

function of (u, v), then

∇v(∇u(λw))−∇u(∇v(λw)) = λ (∇v(∇uw)−∇u(∇vw)) .

Use Proposition 8.1.2 to show that

∇v(∇uσu)−∇u(∇vσu) = K(−Fσu + Eσv),

where

K =
LN −M2

EG− F 2
,

and find a similar expression for ∇v(∇uσv) − ∇u(∇vσv). Deduce

that

∇v(∇uw) = ∇u(∇vw)

for all tangent vector fields w if and only if K = 0 everywhere on

the surface. (Note that this holds for the plane: wuv = wvu.) We

shall see the significance of the condition K = 0 in Section 8.4.
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8.2 Principal curvatures of a surface

We now examine the Weingarten map Wp,S of a surface S at a point p ∈ S
in a little more detail (we shall usually omit the subscripts). The crucial point

is that W is self-adjoint (Corollary 7.2.4). From Theorem A.0.3 we deduce the

following proposition.

Proposition 8.2.1

Let p be a point of a surface S. There are scalars κ1, κ2 and a basis {t1, t2} of

the tangent plane TpS such that

W(t1) = κ1t1, W(t2) = κ2t2.

Moreover, if κ1 	= κ2, then �t1, t2 = 0.

The real numbers κ1 and κ2 are the eigenvalues of W , and t1 and t2 are

corresponding eigenvectors. But in this situation, we adopt a special terminol-

ogy: κ1 and κ2 are called the principal curvatures of S, and t1 and t2 are called

principal vectors corresponding to κ1 and κ2.

Points of the surface at which the two principal curvatures are equal (to

κ, say) are called umbilics. At an umbilic, the equations W(t1) = κt1 and

W(t2) = κt2 imply that W(t) = κt if t is any linear combination of t1 and t2.

Thus, p is an umbilic if and only if Wp,S is a scalar multiple of the identity map,

and in that case every tangent vector is principal. On the other hand, if p ∈ S is

not an umbilic, Proposition 8.2.1 tells us that principal vectors corresponding to

the two principal curvatures are necessarily orthogonal (Theorem A.0.3). Thus,

whether or not p is an umbilic we can always find two orthogonal principal

vectors in TpS, and we obtain:

Corollary 8.2.2

If p is a point of a surface S, there is an orthonormal basis of the tangent plane

TpS consisting of principal vectors.

The principal curvatures are related in a simple way to the mean and

Gaussian curvatures:
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Proposition 8.2.3

If κ1 and κ2 are the principal curvatures of a surface, the mean and Gaussian

curvatures are given by

H =
1

2
(κ1 + κ2), K = κ1κ2.

Proof

The determinant and trace of the Weingarten map W can be computed using

the matrix of W with respect to any basis of the tangent plane. Using the basis

formed by the principal vectors, the matrix is

(
κ1 0

0 κ2

)
.

The proposition now follows immediately from Definition 8.1.1.

One reason for introducing the principal curvatures and principal vectors

is contained in the following result, which shows that, if we know the principal

curvatures and principal vectors of a surface, it is easy to calculate the normal

curvature of any curve on the surface:

Euler’s Theorem 8.2.4

Let γ be a curve on an oriented surface S, and let κ1 and κ2 be the principal

curvatures of σ, with non-zero principal vectors t1 and t2. Then, the normal

curvature of γ is

κn = κ1 cos
2 � + κ2 sin

2 ��

where � is the oriented angle t̂1γ̇.

Proof

Let p ∈ S, let κ1 and κ2 be the principal curvatures of S at p, and let t1 and

t2 be corresponding principal vectors. By Corollary 8.2.2, we can assume that

{t1, t2} is an orthonormal basis of TpS. Moreover, by replacing t2 by −t2 if

necessary, we can assume that the oriented angle t̂1t2 = +π/2.

With these assumptions, we have

γ̇ = cos θt1 + sin θt2.
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t2

t1

°

µ

.

°

By Proposition7.3.5,

κn = ��γ̇, γ̇�� = cos2 ���t1, t1�� + 2 sin � cos ���t1, t2�� + sin2 ���t2, t2��.

Now, for i, j = 1, 2,

��ti, tj�� = ��(ti), tj� = �κiti, tj� =

{
κi if i = j

0 if i 	= j
.

Hence the result.

Corollary 8.2.5

The principal curvatures at a point of a surface are the maximum and minimum

values of the normal curvature of all curves on the surface that pass through

the point. Moreover, the principal vectors are the tangent vectors of the curves

giving these maximum and minimum values.

Proof

If the principal curvatures κ1 and κ2 are different, we might as well suppose

that κ1 > κ2. Let κn be the normal curvature of a curve γ on the surface.

Then, since

κn = κ1 cos
2 � + κ2 sin

2 � = κ1 − (κ1 − κ2) sin
2 ��

it is clear that κn ≤ κ1 with equality if and only if � = 0 or π, i.e., if and only

if the tangent vector γ̇ of γ is parallel to the principal vector t1. Similarly, one

shows that κn ≥ κ2 with equality if and only if γ̇ is parallel to t2.

If κ1 = κ2, the normal curvature of every curve is equal to κ1 by Euler’s

Theorem and every tangent vector to the surface is a principal vector.
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To compute the principal curvatures, we work in a surface patch σ(u, v); let

Edu2 + 2Fdudv +Gdv2 and Ldu2 + 2Mdudv +Ndv2

be its first and second fundamental forms. In the notation of Section 8.1, the ma-

trix of the Weingarten map W with respect to the basis {σu,σv} of the tangent

plane is F−1
I FII . Hence, the principal curvatures are the roots κ of the equation

det(F−1
I FII − κI) = 0,

and a tangent vector t = ξσu + ησv is a principal vector if

(F−1
I FII − κI)

(
ξ

η

)
=

(
0

0

)
.

Writing F−1
I FII − κI as F−1

I (FII − κFI), we obtain the following.

Proposition 8.2.6

In the above notation, the principal curvatures are the roots of the equation

∣∣∣∣
L− κE M − κF

M − κF N − κG

∣∣∣∣ = 0,

and the principal vectors corresponding to the principal curvature κ are the

tangent vectors t = ξσu + ησv such that
(

L− κE M − κF

M − κF N − κG

)(
ξ

η

)
=

(
0

0

)
.

Example 8.2.7

It is intuitively clear that a sphere curves the same amount in every direction,

and at every point of the sphere. Thus, we expect that the principal curvatures

of a sphere are equal to each other at every point, and are constant over the

sphere. To confirm this by calculation, we work with the unit sphere S2 and use

the latitude longitude parametrization as usual. We found in Example 6.1.3 that

E = 1, F = 0, G = cos2 � and in Example 7.1.2 that L = 1,M = 0, N = cos2 �.

So the principal curvatures are the roots of
∣∣∣∣
1− κ 0

0 cos2 � − κ cos2 �

∣∣∣∣ = 0,

i.e., κ = 1 (repeated root), as we expected. Every tangent vector is a principal

vector.
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Example 8.2.8

We consider the unit cylinder parametrized in the usual way:

σ(u, v) = (cos v, sin v, u).

We found in Example 6.1.4 that E = 1, F = 0, G = 1 and in Example 7.1.2

that L = 0,M = 0, N = 1. So the principal curvatures are the roots of
∣∣∣∣
0− κ 0

0 1− κ

∣∣∣∣ = 0,

i.e., κ = 0 or 1. Any principal vector t1 corresponding to κ1(= 1) satisfies

(
−1 0

0 0

)(
ξ1
η1

)
= 0,

so ξ1 = 0 and t1 is a multiple of σv = (− sin v, cos v, 0). Similarly, one finds that

any principal vector corresponding to κ2 (= 0) is a multiple of σu = (0, 0, 1).

t2

t1

Example 8.2.7 proves the intuitively obvious fact that on a sphere every

point is an umbilic. The same is clearly true for a plane, since in that case

both principal curvatures are zero everywhere. Remarkably, there are no other

surfaces with this property:

Proposition 8.2.9

Let S be a (connected) surface of which every point is an umbilic. Then, S is

an open subset of a plane or a sphere.
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Proof

For every tangent vector t, we have W(t) = κt where κ is the principal curva-

ture. Let σ : U → R3 be a surface patch of S with U a (connected) open subset

of R2. Taking t = σu and σv and recalling from the proof of Proposition 7.2.2

that W(σu) = −Nu,W(σv) = −Nv, we get

Nu = −κσu, Nv = −κσv. (8.3)

Hence,

(κσu)v = −(Nu)v = −(Nv)u = (κσv)u,

so

κvσu = κuσv.

Since σ is regular, σu and σv are linearly independent, so the last equation

implies that κu = κv = 0. Thus, κ is constant.

There are now two cases to consider. If κ = 0, Eqs. 8.3 show that N is

constant. Then,

(N · σ)u = N · σu = 0, (N · σ)v = N · σv = 0,

so N ·σ is a constant, say c. Then σ(U) is an open subset of the plane v ·N = c.

If κ 	= 0, Eq. 8.3 shows that

N = −κσ + a,

where a is a constant vector. Hence,

∣∣∣∣
∣∣∣∣σ −

1

κ
a

∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣−

1

κ
N

∣∣∣∣
∣∣∣∣
2

=
1

κ2
,

so σ(U) is an open subset of the sphere with centre κ−1a and radius κ−1.

We have now proved the proposition when S is covered by a single surface

patch. For an arbitrary surface S, the preceding argument shows that each

patch in the atlas of S is contained in a plane or a sphere. But if the images of

two patches intersect they must clearly be part of the same plane or the same

sphere. It follows that the whole of S is contained in a plane or a sphere.

Note that this proposition is an analogue for surfaces of Example 2.2.7,

which tells us that a plane curve with constant curvature is part of a circle.

We conclude this section by showing how the values of the principal cur-

vatures at a point p of a surface S provide information about the shape of S

near p. To simplify the situation, we assume that p is the origin and that TpS

is the xy-plane: this can be arranged by applying a suitable isometry of R3 to

S (which does not change its shape). By a further rotation around the z-axis,
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we can also assume that the tangent vectors t1 = (1, 0, 0) and t2 = (0, 1, 0)

are principal, and correspond to principal curvatures κ1 and κ2. Finally, by

reflecting in the xy-plane if necessary, we can assume that the unit normal of

S at p is N = (0, 0, 1).

Let σ be a surface patch of S with σ(0, 0) = 0. For any x, y ∈ R, there are

unique s, t ∈ R such that

(x, y, 0) = sσu + tσv

(here and below, the derivatives of σ are evaluated at (0, 0)). By Taylor’s

theorem,

σ(s, t) = σ(0, 0) + sσu + tσv +
1

2
(s2σuu + 2stσuv + t2σvv)

if we neglect terms involving higher powers of s and t. Hence, if x and y (and

hence s and t) are small, we have σ(s, t) = (x, y, z), where

z =
1

2
(s2σuu + 2stσuv + t2σvv) ·N =

1

2
(Ls2 + 2Mst+Nt2)

approximately, where Ldu2+2Mdudv+Ndv2 is the second fundamental form

of σ at the origin. If t = sσu + tσv, then by Proposition7.3.3,

Ls2 + 2Mst+Nt2 = ��t, t�� = ��(t), t�.

Now, t = xt1 + yt2 so

W(t) = xW(t1) + yW(t2) = κ1xt1 + κ2yt2 = (κ1x,κ2y, 0).

Hence,

Ls2 + 2Mst+Nt2 = (κ1x,κ2y, 0) · (x, y, 0) = κ1x
2 + κ2y

2.

Hence, near the point p, S is approximated by the quadric surface

z =
1

2
(κ1x

2 + κ2y
2). (8.4)

We distinguish four cases:

(i) κ1 and κ2 are both > 0 or both < 0. Then, (8.4) is the equation of an

elliptic paraboloid (see Theorem5.2.2) and one says that p is an elliptic

point of the surface.

(ii) κ1 and κ2 are of opposite sign (both non-zero). Then, (8.4) is the equation

of a hyperbolic paraboloid and one says that p is a hyperbolic point of the

surface.
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(iii) One of κ1 and κ2 is zero, the other is non-zero. Then, (8.4) is the equation

of a parabolic cylinder and one says that p is a parabolic point of the

surface.

z = y4 z = x3 − 3xy2

(iv) Both principal curvatures are zero at p. Then, (8.4) is the equation of a

plane, and one says that p is a planar point of the surface. In this case,

one cannot determine the shape of the surface near p without examining

derivatives of order higher than the second (in the non-planar case, these

terms are small compared to κ1x
2 + κ2y

2 when x and y are small). For

example, the surfaces above both have the origin as a planar point, but

they have quite different shapes. (The surface on the right is called the

monkey saddle as it is the right shape for the saddle on a bicycle ridden

by a monkey: two ways down for the two legs and a third for the tail.)

The classification of points of a surface as elliptic, hyperbolic, parabolic

or planar is independent of the surface patch σ, since reparametrizing either

leaves the principal curvatures unchanged or changes the sign of both of them

(Exercise 8.2.8).

Example 8.2.10

On S2, κ1 = κ2 = ±1 (the sign depending on the parametrization) so all points

are elliptic (and umbilics). On a circular cylinder, κ1 = ±1, κ2 = 0, so every

point is parabolic (and there are no umbilics). On a plane, κ1 = κ2 = 0 so all

points are planar (!) (and umbilics).

Example 8.2.11

For the torus σ(��ϕ) = ((a+b cos θ) cosϕ, (a+b cos θ) sinϕ, b sin θ) (see Exercise

4.2.5), we find that the first and second fundamental forms are

b2dθ2 + (a+ b cos θ)2dϕ2 and b dθ2 + (a+ b cos θ) cos θ dϕ2,
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respectively, so the principal curvatures are

κ1 =
1

b
, κ2 =

cos �

a+ b cos �
.

Since κ1 > 0 (everywhere), the point σ(��ϕ) of the torus is elliptic, parabolic or

hyperbolic according to κ2 is > 0, = 0 or < 0, respectively; from the formula for

κ2, these are the regions of the torus given by −π/2 < θ < π/2, θ = ±π/2 and

π/2 < θ < 3π/2, respectively. Pictures of the elliptic and hyperbolic regions

can be found in the solution to Exercise 8.1.9 (where they are labelled S+ and

S−, respectively); the parabolic region consists of two circles of radius a centred

on the z-axis.

EXERCISES

8.2.1 Calculate the principal curvatures of the helicoid and the catenoid,

defined in Exercises 4.2.6 and 5.3.1, respectively.

8.2.2 A curve γ on a surface S is called a line of curvature if the tangent

vector of γ is a principal vector of S at all points of γ (a ‘line’

of curvature need not be a straight line!). Show that γ is a line of

curvature if and only if
Ṅ = −λγ̇,

for some scalar λ, where N is the standard unit normal of σ, and

that in this case the corresponding principal curvature is λ. (This is

called Rodrigues’ formula.)

8.2.3 Show that a curve γ(t) = σ(u(t), v(t)) on a surface patch σ is a line

of curvature if and only if (in the usual notation)

(EM − FL)u̇2 + (EN − GL)u̇v̇ + (FN −GM )v̇2 = 0.

Deduce that all parameter curves are lines of curvature if and only

if either

(i) the second fundamental form of σ is proportional to its first

fundamental form, or

(ii) F = M = 0.

For which surfaces does (i) hold? Show that the meridians and par-

allels of a surface of revolution are lines of curvature.

8.2.4 In the notation of Example 8.1.5, show that if γ is a curve on a

surface S and δ is the unit normal of S, then K = 0 if and only if γ

is a line of curvature of S.
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8.2.5 Suppose that two surfaces S1 and S2 intersect in a curve C that is

a line of curvature of S1. Show that C is a line of curvature of S2

if and only if the angle between the tangent planes of S1 and S2 is

constant along C.

8.2.6 Let Σ : W → R3 be a smooth function defined on an open subset

W of R3 such that, for each fixed value of u (resp. v, w), Σ (u, v, w)

is a (regular) surface patch. Assume also that

Σ u · Σ v = Σ v · Σ w = Σ w · Σ u = 0. (8.5)

This means that the three families of surfaces formed by fixing

the values of u, v or w constitute a triply orthogonal system (see

Section 5.5).

(i) Show that Σ u · Σ vw = Σ v · Σ uw = Σ w · Σ uv = 0.

(ii) Show that, for each of the surfaces in the triply orthogonal

system, the matrices FI and FII are diagonal.

(iii) Deduce that the intersection of any surface from one family

of the triply orthogonal system with any surface from another

family is a line of curvature on both surfaces. (This is called

Dupin’s Theorem.)

8.2.7 Show that, if p, q and r are distinct positive numbers, there are

exactly four umbilics on the ellipsoid

x2

p2
+

y2

q2
+

z2

r2
= 1.

What happens if p, q and r are not distinct?

8.2.8 Show that the principal curvatures of a surface patch σ : U → R3 are

smooth functions on U provided that σ has no umbilics. Show also

that the principal curvatures either stay the same or both change

sign when σ is reparametrized.

8.3 Surfaces of constant Gaussian curvature

We have seen in the examples in Section 8.1 some surfaces of zero and constant

positive curvature. For an example of a surface with constant negative Gaussian
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curvature, however, we have to construct a new surface. To this end, we examine

again the surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u))

obtained by rotating the unit-speed curve u �→ (f(u), 0, g(u)) in the xz-plane

around the z-axis. We found in Example 8.1.4 that its Gaussian curvature is

K = −
f̈

f
. (8.6)

Suppose first that K = 0 everywhere. Then, Eq. 8.6 gives f̈ = 0, so f(u) =

au + b for some constants a and b. Since ḟ2 + ġ2 = 1, we get ġ = ±
√
1− a2

(so we must have |a| ≤ 1) and hence g(u) = ±
√
1− a2u+ c, where c is another

constant. By applying a translation along the z-axis we can assume that c = 0,

and by applying a rotation by π about the x-axis, if necessary, we can assume

that the sign is +. This gives the ruled surface

σ(u, v) = (b cos v, b sin v, 0) + u(a cos v, a sin v,
√
1− a2).

If a = 0 this is a circular cylinder; if |a| = 1 it is the xy-plane; and if 0 < |a| < 1

it is a circular cone (to see this, put ũ = au+ b).

Now suppose that K > 0, say K = 1/R2, where R > 0 is a constant. Then,

Eq. 8.6 becomes

f̈ +
f

R2
= 0,

which has the general solution

f(u) = a cos
( u

R
+ b

)
,

where a and b are constants. We can assume that b = 0 by performing a

reparametrization ũ = u+Rb, ṽ = v. Then, up to a change of sign and adding

a constant,

g(u) =

∫ √
1− a2

R2
sin2

u

R
du.

The integral in the formula for g(u) can be evaluated in terms of ‘elementary’

functions only when a = 0 or ±R. The case a = 0 does not give a surface, and

if a = R then f(u) = R cos u
R
, g(u) = R sin u

R
, and we have a sphere of radius

R (the case a = −R can be reduced to this by rotating the surface by π around

the z-axis).

Suppose finally that K < 0. We can restrict ourselves to the case K = −1,

as the general case can be obtained from this by applying a dilation of R3 (see

Exercise 8.1.5). In view of the preceding case, we can think of a surface with

K = −1 as a ‘sphere of imaginary radius’
√
−1, or a ‘pseudosphere’.
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When K = −1 the general solution of Eq. 8.6 is

f(u) = aeu + be−u,

where a and b are arbitrary constants. The function g(u) can be expressed in

terms of elementary functions only if one of a or b is zero. If b = 0 we can

assume that a = 1 by a reparametrization u �→ u + constant, and the case

in which a = 0 can be reduced to the case b = 0 by the reparametrization

u �→ −u. Suppose then that a = 1 and b = 0; then, f(u) = eu and we can take

g(u) =

∫ √
1− e2u du. (8.7)

Note that we must have u ≤ 0 for the integral in Eq. 8.7 to make sense, since

otherwise 1− e2u would be negative. The integral can be evaluated by putting

cos � = eu. Then,
∫ √

1− e2u du = −
∫

sin2 �

cos �
 � = sin � − ln(sec � + tan �)

=
√
1− e2u − ln(e−u +

√
e−2u − 1).

We have omitted the arbitrary constant, but we can take it to be zero by a

suitable translation of the surface parallel to the z-axis. Putting x = f(u),

z = g(u), and noting that cosh−1(v) = ln(v+
√
v2 − 1), we see that the profile

curve in the xz-plane has equation

z =
√
1− x2 − cosh−1

(
1

x

)
. (8.8)

Rotating this curve around the z -axis thus gives a surface which has Gaussian

curvature −1 everywhere. Note that, since u ≤ 0, x = eu is restricted to the

range 0 < x ≤ 1.
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The curve defined by Eq. 8.8 is called the tractrix, and it has an interesting

geometrical property. Consider the tangent line at a point P of its graph, and

suppose that it intersects the z-axis at the point Q. Let us compute the distance

from P to Q.

z

x

Q

P

(1, 0)

Suppose that P is the point (x0, z0). Either by a direct calculation or by

inspecting the calculation of the integral (8.7), one finds that

dz

dx
=

√
1− x2

x
.

Hence, the tangent line at P has equation

z − z0 =

√
1− x2

0

x0
(x − x0).

This meets the z-axis at the point (0, z1), where

z1 − z0 =

√
1− x2

0

x0
(0− x0) = −

√
1− x2

0.

Hence, the square of the distance from P to Q is

x2
0 + (z1 − z0)

2 = x2
0 + 1− x2

0 = 1,

so the distance from P to Q is constant and equal to 1.

This means that the tractrix has the following description. Let a donkey

pull a box of stones by a rope of length 1. Suppose that the donkey is initially

at (0, 0), the box is initially at (1, 0), and let the donkey walk slowly along the

negative z-axis. Then, the box of stones moves along the tractrix.
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EXERCISES

8.3.1 Show that:

(i) Setting w = e−u gives a reparametrization σ1(v, w) of the pseu-

dosphere with first fundamental form

dv2 + dw2

w2

(called the upper half-plane model).

(ii) Setting

V =
v2 + w2 − 1

v2 + (w + 1)2
, W =

−2v

v2 + (w + 1)2

defines a reparametrization σ2(V,W ) of the pseudosphere with

first fundamental form

4(dV 2 + dW 2)

(1 − V 2 −W 2)2

(called the Poincaré disc model: the region w > 0 of the vw-

plane corresponds to the disc V 2 +W 2 < 1 in the VW -plane).

(iii) Setting

V̄ =
2V

V 2 +W 2 + 1
, W̄ =

2W

V 2 +W 2 + 1

defines a reparametrization σ2(V̄ , W̄ ) of the pseudosphere with

first fundamental form

(1− W̄ 2)dV̄ 2 + 2V̄ W̄ dV̄ dW̄ + (1 − V̄ 2)dW̄ 2

(1 − V̄ 2 − W̄ 2)2

(called the Beltrami-Klein model: the region w > 0 of the vw-

plane again corresponds to the disc V̄ 2 + W̄ 2 < 1 in the V̄ W̄ -

plane).

In cases (i) and (ii), find the open subsets of the vw- and VW -plane,

respectively, corresponding to the open set

{(u, v) |u < 0,−π < v < π}

in the parametrization of the pseudosphere given in the text.

These models are discussed in much more detail in Chapter 11.
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8.4 Flat surfaces

In Section 8.3, we gave some examples of surfaces of constant Gaussian curva-

ture K, but this certainly falls well short of a complete classification of such

surfaces. It is possible, however, to give a fairly complete description of flat

surfaces, i.e., surfaces for which K = 0 everywhere. To do so, we shall make use

of a special parametrization, valid for any surface, described in the following

proposition.

Proposition 8.4.1

Let p be a point of a surface S, and suppose that p is not an umbilic. Then, there

is a surface patch σ(u, v) of S containing p whose first and second fundamental

forms are
Edu2 +Gdv2 and Ldu2 +Ndv2,

respectively, for some smooth functions E,G,L and N.

We recall that a point p of a surface S is an umbilic if the two principal

curvatures of S at p are equal. From Section 8.2, we see that for the patch

σ in the statement of the proposition, σu and σv are principal vectors with

corresponding principal curvatures L/E and N/G. We call σ a principal patch.

We assume Proposition 8.4.1 for the moment, and use it to give the proof of

Proposition 8.4.2

Let p be a point of a flat surface S, and assume that p is not an umbilic. Then,

there is a patch of S containing p that is a ruled surface.

Proof

We take a principal patch σ : U → R3 containing p as in Proposition 8.4.1,

say p = σ(u0, v0). By Corollary 8.1.3, the Gaussian curvature K = LN/EG.

Since the Gaussian curvature is zero everywhere, either L = 0 or N = 0 at

each point of U , and since p is not an umbilic L and N are not both zero.

Suppose that L(u0, v0) 	= 0, say. Then, L(u, v) 	= 0 for (u, v) in some open

subset of U containing (u0, v0). Hence, by shrinking U if necessary, we can

assume that L 	= 0 at every point of U . Then, N = 0 everywhere, and the

second fundamental form of σ is Ldu2.

We shall prove that the parameter curves u = constant are straight lines.

Such a curve can be parametrized by v !→ σ(u0, v), where u0 is the constant
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value of u. A unit tangent vector to this curve is t = σv/G
1/2, so by

Proposition 1.1.6 what we have to prove is that tv = 0.

By the proof of Proposition 8.1.2, the derivatives of the unit normal are

Nu = −E−1Lσu, Nv = 0. (8.9)

Hence, tv · σu = −EL−1tv ·Nu. Now, t ·Nu = 0 and Nuv = 0 by Eq. 8.9, so

tv ·Nu = −t · Nuv = 0. Hence, tv · σu = 0. Next, tv · t = 0 since t is a unit

vector by construction, so tv ·σv = 0. Finally, tv ·N = −t ·Nv = 0 by Eq. 8.9

again. Since the vectors σu,σv and N form a basis of R3, we have proved that

tv = 0.

Our task, then, is to describe the structure of flat ruled surfaces. We

parametrize the ruled surface as in Example 8.1.5:

σ(u, v) = γ(u) + vδ(u).

We found there that σu = γ̇ + vδ̇, σv = δ, the dot denoting d/du, and that

the Gaussian curvature of σ is zero if and only if

δ̇ · (σu × σv) = 0.

Since
σu × σv = γ̇ × δ + vδ̇ × δ,

and δ̇ · (δ̇ × δ) = 0,

K = 0 if and only if δ̇ · (γ̇ × δ) = 0. (8.10)

Thus, K = 0 if and only if γ̇, δ and δ̇ are everywhere linearly dependent.

To proceed further, let us assume, as we may, that δ(u) is a unit vector for

all values of u. Then, δ · δ̇ = 0. Suppose first that δ̇(u) = 0 for all values of u.

Then, δ is a constant vector and σ is a generalized cylinder.

Suppose now that δ̇ is never zero. Then, δ and δ̇ are linearly independent

as they are non-zero and perpendicular, so if γ̇, δ and δ̇ are linearly dependent,

then
γ̇(u) = f(u)δ(u) + g(u)δ̇(u)

for some smooth functions f and g. Assume first that f = ġ everywhere. Then,

γ̇ = (gδ)˙ and so γ = gδ + a, where a is a constant vector; hence,

σ(u, v) = a+ (v + g(u))δ(u).

Putting ũ = u, ṽ = v + g(u), we see that this is a reparametrization of a

generalized cone.

Suppose finally that δ̇ and f − ġ are both nowhere zero. If we define

γ̃(u) = γ(u)− g(u)δ(u), ṽ =
v + g(u)

f(u)− ġ(u)
,
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a short calculation gives

σ(u, v) = γ̃(u) + ṽ ˙̃γ(u),

so σ is a reparametrization of an open subset of the tangent developable of γ̃.

Of course, it could be that none of the conditions on δ, f and g considered

above are satisfied. In fact, we have only shown that certain open subsets

of the surface are parts of generalized cylinders, generalized cones or tangent

developables. It is not true that the whole surface must be one of these three

types, since flat surfaces of different types can be joined together to make a

smooth surface, as shown in the diagram above. It can be shown that the most

general flat surface is a patchwork consisting of pieces of generalized cylinders,

generalized cones and tangent developables, joined together along segments of

straight lines.

The remainder of this section is devoted to the proof of Proposition 8.4.1

and can safely be omitted by readers who are uncomfortable with the use of

the inverse function theorem. In fact, we can prove a more general result with

no additional effort:

Proposition 8.4.3

Let σ̃ : Ũ → R3 be a surface patch, and suppose that for all (ũ, ṽ) ∈ Ũ we are

given tangent vectors

e1(ũ, ṽ) = a(ũ, ṽ)σ̃ũ + b(ũ, ṽ)σ̃ṽ, e2(ũ, ṽ) = c(ũ, ṽ)σ̃ũ + d(ũ, ṽ)σ̃ṽ,

whose components a, b, c, d are smooth functions of (ũ, ṽ). Assume that, at

some point (ũ0, ṽ0) ∈ Ũ , the vectors e1(ũ0, ṽ0) and e2(ũ0, ṽ0) are linearly in-

dependent. Then, there is an open subset Ṽ of Ũ containing (ũ0, ṽ0) and a

reparametrization σ(u, v) of σ̃(ũ, ṽ), for (ũ, ṽ) ∈ Ṽ , such that σu and σv are

parallel to e1 and e2, respectively.
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Proposition 8.4.1 is a special case of Proposition 8.4.3. In fact, let σ̃ be

any surface patch of S containing p, and let p = σ̃(ũ0, ṽ0). Since the principal

curvatures κ1 and κ2 of σ̃ are distinct at p, and are continuous functions by

Exercise 8.2.8, they remain distinct for (ũ, ṽ) in some open set Ũ containing

(ũ0, ṽ0) on which σ̃ is defined. Let

e1 = ξ1σ̃ũ + η1σ̃ṽ, e2 = ξ2σ̃ũ + η2σ̃ṽ

be unit principal vectors corresponding to κ1 and κ2; they are perpendic-

ular by Proposition 8.2.1. Let σ(u, v) be a reparametrization of σ̃ as in

Proposition 8.4.3. Then, σu · σv = 0 because e1 and e2 are perpendicular,

so the first fundamental form of σ is of the form Edu2 + Gdv2. Also, σu and

σv are principal vectors corresponding to κ1 and κ2, so we have

(FII − κ1FI)

(
1

0

)
= (FII − κ2FI)

(
0

1

)
=

(
0

0

)
,

where FI and FII are the matrices associated to the first and second

fundamental forms of σ. Since FI =

(
E 0

0 G

)
, these equations imply that

FII =

(
κ1E 0

0 κ2G

)
, so the second fundamental form of σ is Ldu2 +Ndv2,

where L = κ1E and N = κ2G.

We are thus left with the proof of Proposition 8.4.3. To begin, we observe

that, if
e = Aσ̃ũ +Bσ̃ṽ,

where A and B are any given smooth functions of (ũ, ṽ) ∈ Ũ , we can find a

curve γ in σ̃ with γ̇ = e and with any given point q = σ̃(α, β) as starting point

γ(0). For, finding such a curve γ(t) = σ̃(ũ(t), ṽ(t)) is equivalent to solving the

pair of ordinary differential equations

˙̃u = A(ũ, ṽ), ˙̃v = B(ũ, ṽ)

with initial conditions ũ(0) = α, ṽ(0) = β. It is proved in the theory of ordinary

differential equations that this problem has a unique solution ũ(t), ṽ(t) defined

on some open interval containing t = 0. Moreover, ũ and ṽ are smooth functions

of the three variables t, α and β.

Applying this observation to e = e1, we can find a curve γ1(s1) in σ̃ with

γ1(0) = σ̃(ũ0, ṽ0) and dγ1/ds1 = e1. Now applying the same observation to

e = e2, we can find, for each value of s1 close to 0, a curve s2 "→ λ(s1, s2)

in σ̃ with ∂λ/∂s2 = e2 and λ(s1, 0) = γ1(s1). Define (ũ, ṽ) as functions of

(s1, s2) by
σ̃(ũ, ṽ) = λ(s1, s2). (8.11)
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°2

°2(s2)

°1(s1) °1

λ(s1, .)

μ(., s2)

σ(u0, v0)
~ ~ ~

Differentiating with respect to s1 and s2 gives

σ̃ũ
∂ũ

∂s1
+ σ̃ṽ

∂ṽ

∂s1
= λs1 , σ̃ũ

∂ũ

∂s2
+ σ̃ṽ

∂ṽ

∂s2
= λs2 .

We have

λs1 |s2=0
=

d

ds1
λ(s1, 0) =

dγ1

ds1
= e1, λs2 =

∂λ

∂s2
= e2. (8.12)

Equating coefficients of σ̃ũ and σ̃ṽ, we see from the last two sets of equations

that, at the point σ̃(ũ0, ṽ0), where s1 = s2 = 0, the Jacobian matrix

(

∂ũ
∂s1

∂ũ
∂s2

∂ṽ
∂s1

∂ṽ
∂s2

)

=

(
a c

b d

)
. (8.13)

Since e1 and e2 are linearly independent at (ũ0, ṽ0), this matrix is invertible.

By the Inverse Function Theorem 5.6.1, Eq. 8.11 can be solved for (s1, s2) as

smooth functions of (ũ, ṽ) when (ũ, ṽ) is in some open set W̃ of Ũ containing

(ũ0, ṽ0). Thus, λ is an allowable surface patch; by Eq. 8.12, it has the property

that λs1 = e1 when s2 = 0, and λs2 = e2 everywhere.

We now repeat the procedure, this time starting with a curve γ2(t2) with

dγ2/dt2 = e2 and γ2(0) = σ̃(ũ0, ṽ0), and then taking a curve t1 #→ µ(t1, t2)

with ∂µ/∂t1 = e1 and µ(0, t2) = γ2(t2). This gives an allowable patch µ(t1, t2)

such that

µ(t1, t2) = σ̃(ũ, ṽ)

for (ũ, ṽ) in some open subset Z̃ of Ũ containing (ũ0, ṽ0). This patch has the

property that µt1 = e1 everywhere and µt2 = e2 when t1 = 0.
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The parametrization we want is σ(u, v), where σ(u, v) is the intersection

of the curve s2 $→ λ(u, s2) with the curve t1 $→ µ(t1, v). Thus, we consider the

equations
σ̃(ũ, ṽ) = λ(u, s2) = µ(t1, v).

From Eq. 8.13,
∂ũ

∂u
= a,

∂ṽ

∂u
= b,

and similarly
∂ũ

∂v
= c,

∂ṽ

∂v
= d.

Hence, the Jacobian matrix
(

∂ũ
∂u

∂ũ
∂v

∂ṽ
∂u

∂ṽ
∂v

)
=

(
a c

b d

)
.

As usual, the fact that this matrix is invertible means that (u, v) can be ex-

pressed as smooth functions of (ũ, ṽ), for (ũ, ṽ) in some open subset Ṽ of W̃ ∩Z̃

containing (ũ0, ṽ0), and we get a reparametrization σ(u, v) of σ̃(ũ, ṽ). Finally,

the equation σ(u, v) = µ(t1, v) implies that

σu =
∂t1
∂u

µt1 =
∂t1
∂u

e1,

and similarly

σv =
∂s2
∂v

e2,

so σu and σv are parallel to e1 and e2 everywhere.

EXERCISES

8.4.1 Let p be a hyperbolic point of a surface S (see Section 8.2). Show

that there is a patch of S containing p whose parameter curves

are asymptotic curves (see Exercise 7.3.6). Show that the second

fundamental form of such a patch is of the form 2Mdudv.

8.5 Surfaces of constant mean curvature

We now consider surfaces whose mean curvature H is constant. Such surfaces

have an interesting physical interpretation: we shall show in Section 12.1 that

soap bubbles always adopt the form of a surface of constant mean curvature. In

this section we give two simple constructions of surfaces of constant non-zero

mean curvature; the case in which H = 0 is treated in much more detail in

Chapter 12.
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The first of these gives a correspondence between surfaces of constant non-

zero mean curvature and surfaces of constant positive Gaussian curvature.

Definition 8.5.1

Let S be an oriented surface and let % ∈ R. The parallel surface Sλ of S is

Sλ = {p+ %Np |p ∈ S},

where Np is the unit normal of S at the point p.

s

s ̧

¸

Roughly speaking, Sλ is obtained by translating the surface S at a distance

% perpendicular to itself (but this will not be a genuine translation since Np

will in general depend on p).

Proposition 8.5.2

Let κ1 and κ2 be the principal curvatures of an oriented surface S, let % ∈ R

and let Sλ be the corresponding parallel surface of S. Assume that neither κ1

nor κ2 is equal to 1/% at any point of S. Then,
(i) Sλ is a (smooth) oriented surface, the unit normal of Sλ at p+%Np being

equal to ǫNp, where ǫ is the sign of (1− λκ1)(1− λκ2).

(ii) The principal curvatures of Sλ are ǫκ1/(1− λκ1) and ǫκ2/(1− λκ2), and

the corresponding principal vectors are the same as those of S for the

principal curvatures κ1 and κ2, respectively.

(iii) The Gaussian and mean curvatures of Sλ are

K

1− 2λH + λ2K
and

ǫ(H − λK)

1− 2λH + λ2K
,

respectively, where K and H are the Gaussian and mean curvatures of S.
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Proof

Let σ(u, v) be a surface patch of S with standard unit normal N(u, v). Define

σλ(u, v) = σ(u, v) + &N(u, v).

By Proposition 8.1.2,

σλ
u = σu + &Nu = (1− &')σu − λbσv,

σλ
v = σv + λNv = −λcσu + (1− λd)σv, (8.14)

where

Wσ =

(
a c

b d

)

is the matrix of the Weingarten map of S with respect to the basis {σu,σv}

of the tangent plane. Hence,

σλ
u × σλ

v = (1− λ(a+ d) + λ2(ad− bc))σu × σv.

Since κ1 and κ2 are the eigenvalues of Wσ (see Section 8.2), and since the

sum and product of the eigenvalues of a matrix are equal to the trace and the

determinant of the matrix, respectively,

κ1 + κ2 = a+ d, κ1κ2 = ad− bc.

Hence,

σλ
u × σλ

v = (1− λκ1)(1 − λκ2)σu × σv. (8.15)

The assertions in part (i) follow from this equation.

The principal curvatures of Sλ are the eigenvalues of the matrix Wσλ of

the Weingarten map of Sλ with respect to the basis {σλ
u,σ

λ
v}. By the proof of

Proposition 8.1.2, this is the negative of the matrix expressing Nλ
u and Nλ

v in

terms of σλ
u and σλ

v , whereN
λ is the standard unit normal of σλ. Equation 8.14

says that the matrix expressing σλ
u and σλ

v in terms of σu and σv is I −λWσ ,

and the fact that Nλ = ǫN implies that −ǫWσ is the matrix expressing Nλ
u

and Nλ
v in terms of σu and σv. Combining these two observations we get

Wσλ = ǫ(I − λWσ)
−1Wσ.

If T is an eigenvector of Wσ with eigenvalue κ, then T is also an eigenvector of

Wσλ with eigenvalue ǫκ/(1− λκ). The assertions in part (ii) follows from this.

Part (iii) follows from part (ii) by straightforward algebra.
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Corollary 8.5.3

If S has constant Gaussian curvature 1/R2, the parallel surfaces S ± R have

constant mean curvature 1/2R. Conversely, if S has constant mean curvature

1/2R, the parallel surface SR has constant Gaussian curvature 1/R2.

Proof

This follows from part (iii) of the proposition by straightforward algebra. For

example, if H = 1/2R the Gaussian curvature of SR is

K

1− 2RH +R2K
=

K

R2K
=

1

R2
.

The next construction gives a beautiful geometric description of the surfaces

of revolution which have constant non-zero mean curvature in terms of the curve

traced out by the focus of an ellipse that rolls without slipping along a straight

line (cf. Exercise 2.2.10). Take the ellipse to be

x2

p2
+

(y − q)2

q2
= 1,

where p > q > 0 are constants. Thus, the ellipse is tangent to the x-axis at

the origin. The foci of the ellipse are the points f1 = (−ǫp, q) and f2 = (ǫp, q),

where the eccentricity ǫ =
√
1− q2

p2 .

Proposition 8.5.4

With the above notation, let C be the curve traced out by one of the foci of

the ellipse as it rolls without slipping along the x-axis. Let S be the surface

obtained by rotating C around the x-axis. Then, S has constant non-zero mean

curvature.

f1

f1�

f2

p

f2�

φ
φ
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Proof

We consider a situation in which the ellipse has rolled along the x-axis so that

its point of contact with the x-axis is at a point p, the focus f 1 has moved to a

point f 1
′ = (x, y) on C, and the focus f 2 has moved to f 2

′ = (X,Y ), say. Let ϕ

be the angle between p − f1
′ and the x-axis; then ϕ is also the angle between

p− f2
′ and the x-axis by Exercise 1.1.6(iii). Hence,

y = ‖ p− f1
′ ‖ sinϕ, Y = ‖ p− f2

′ ‖ sinϕ

and so

y + Y = 2p sinϕ

by Exercise 1.1.6(i). But Exercise 1.1.6(ii) gives yY = q2 so

y +
q2

y
= 2p sinϕ. (8.16)

Now, since the ellipse rolls without slipping, the point of contact of the ellipse

with the x-axis is stationary. This implies that the point f1
′ moves as if rotating

instantaneously about p, so that the tangent vector to C at f1
′ is perpendicular

to p− f1
′. (If this heuristic argument is unconvincing, an analytical proof can

be found in Exercise 2.2.10.) It follows that

dy

dx
= cotϕ. (8.17)

Eliminating ϕ between Eqs. 8.16 and 8.17 gives

y2 + q2 =
2py

√

1 +
(

dy
dx

)2
. (8.18)

The surface S obtained by rotating C around the x-axis can be parametrized by

σ(x, θ) = (x, y cos θ, y sin θ)

where θ is the angle of rotation. The first and second fundamental forms of

σ are
(
1 +

(
dy

dx

)2
)
dx2 + y2dθ2 and − d2y

dx2
dx2 +

y√
1 +

(
dy
dx

)2
dθ2,

respectively. Using the formula in Corollary 8.1.3, the mean curvature is found

to be

H =
1

2y

√
1 +

(
dy
dx

)2
−

d2y
dx2

2

(
1 +

(
dy
dx

)2
)3/2

. (8.19)



8.5 Surfaces of constant mean curvature 211

Differentiating both sides of Eq. 8.18 we get

2y
dy

dx
=

2p dy
dx√

1 +
(

dy
dx

)2
−

2py dy
dx

d2y
dx2

(
1 +

(
dy
dx

)2
)3/ 2

.

Dividing both sides by 4py dy
dx

and comparing with Eq. 8.19 shows that the

surface S has mean curvature 1/2p.

EXERCISES

8.5.1 Suppose that the first fundamental form of a surface patch σ(u, v)

is of the form E(du2 + dv2). Prove that σuu + σvv is perpendicular

to σu and σv. Deduce that the mean curvature H = 0 everywhere

if and only if the Laplacian

σuu + σvv = 0.

Show that the surface patch

σ(u, v) =

(
u−

u3

3
+ uv2, v −

v3

3
+ u2v, u2 − v2

)

has H = 0 everywhere. (A picture of this surface can be found in

Section 12.2.)

8.5.2 Prove that H = 0 for the surface

z = ln
( cos y
cosx

)
.

(A picture of this surface can also be found in Section 12.2.)

8.5.3 Let σ(u, v) be a surface with first and second fundamental forms

Edu2 +Gdv2 and Ldu2 +Ndv2, respectively (cf. Proposition 8.4.1).

Define

Σ(u, v, w) = σ(u, v) + wN(u, v),

where N is the standard unit normal of σ. Show that the three

families of surfaces obtained by fixing the values of u, v or w in

Σ form a triply orthogonal system (see Section 5.5). The surfaces

w = constant are parallel surfaces of σ. Show that the surfaces u =

constant and v = constant are flat ruled surfaces.
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8.6 Gaussian curvature of compact surfaces

We have seen in Section 8.2 how the relative signs of the principal curvatures

at a point p of a surface S determine the shape of S near p. In fact, since

the Gaussian curvature K of S is the product of its principal curvatures, the

discussion there shows that

(i) If K > 0 at p, then p is an elliptic point.

(ii) If K < 0 at p, then p is a hyperbolic point.

(iii) If K = 0 at p, then p is either a parabolic point or a planar point.

In this section, we give a result which shows how the Gaussian curvature

influences the global shape of a surface. We shall give another result of a similar

nature in Section 13.4.

Proposition 8.6.1

If S is a compact surface, there is a point of S at which its Gaussian curvature

K is > 0.

In the proof, we shall make use of the following fact about compact sets: if

X is a compact subset of R3 and f : R3 → R is a continuous function, then

there are points p,q ∈ X such that f(q) ≤ f(r) ≤ f(p) for all points r ∈ X ,

so that f attains its maximum value on X at p and its minimum at q.

Proof

Define f : R3 → R by f(v) = ‖ v ‖2. Then, f is continuous, so the fact that S
is compact implies that there is a point p ∈ S where f attains its maximum

value. Then S is contained inside the closed ball of radius ‖ p ‖ and centre the

origin, and S intersects its boundary sphere at p. The idea is that S is at least

as curved as the sphere at p, so its Gaussian curvature should be at least that

of the sphere at p, i.e., at least 1/ ‖ p ‖2.
To make this argument precise, let γ(t) be any unit-speed curve in S passing

through p when t = 0. Then, f(γ(t)) has a local maximum at t = 0, so

d

dt
f(γ(t)) = 0,

d2

dt2
f(γ(t)) ≤ 0

at t = 0, i.e.,
γ(0) · γ̇(0) = 0, γ(0) · γ̈(0) + 1 ≤ 0. (8.20)

The equation in (8.20) shows that p = γ(0) is perpendicular to every unit

tangent vector to S at p, and hence is perpendicular to the tangent plane TpS.
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Choose a surface patch σ of S containing p, and let N be its standard unit

normal. By the preceding remark,

N = ±
p

‖ p ‖ . (8.21)

The inequality in (8.20) implies that the normal curvature κn = γ̈(0) ·N of γ

at p (computed in the patch σ) is ≤ −1/ ‖ p ‖ or ≥ 1/ ‖ p ‖, according to

whether the sign in Eq. 8.21 is + or −, respectively. By Corollary 8.2.5, the

principal curvatures of σ at p are either both ≤ −1/ ‖ p ‖ or both ≥ 1/ ‖ p ‖.
In each case, K ≥ 1/ ‖ p ‖2> 0 at p.
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Geo desics

Geodesics are the curves in a surface that a bug living in the surface would

perceive to be straight. For example, the shortest path between two points in a

surface is always a geodesic. We shall actually begin by giving a quite different

definition of geodesics, since this definition is easier to work with. We give

various methods of finding geodesics on surfaces, before finally making contact

with the idea of shortest paths towards the end of the chapter.

9.1 Definition and basic properties

If we drive along a ‘straight’ road, we do not have to turn the wheel of our car to

the right or left (this is what we mean by ‘straight’ !). However, the road is not,

in fact, a straight line as the surface of the earth is, to a good approximation, a

sphere and there can be no straight line on the surface of a sphere. If the road

is represented by a curve γ, its acceleration γ̈ will be non-zero, but we perceive

the curve as being straight because the tangential component of γ̈ is zero, in

other words because γ̈ is perpendicular to the surface. This suggests

Definition 9.1.1

A curve γ on a surface S is called a geodesic if γ̈(t) is zero or perpendicular

to the tangent plane of the surface at the point γ(t), i.e., parallel to its unit

normal, for all values of the parameter t.

Andrew Pressley, Elementary Differential Geometry: Second Edition, 215
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-891-9 9,
c© Springer-Verlag London Limited 2010
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Equivalently, γ is a geodesic if and only if its tangent vector γ̇ is parallel

along γ (see Section 7.4).

Note that this definition makes sense for any surface, orientable or not.

There is an interesting mechanical interpretation of geodesics: a parti-

cle moving on the surface, and subject to no forces except a force acting

perpendicular to the surface that keeps the particle on the surface, would move

along a geodesic. This is because Newton’s second law of motion states that

the force on the particle is parallel to its acceleration γ̈, which would therefore

be perpendicular to the surface.

We begin our study of geodesics by noting that there is essentially no choice

in their parametrization.

Proposition 9.1.2

Any geodesic has constant speed.

Proof

Let γ(t) be a geodesic on a surface S. Then, denoting d/dt by a dot,

d

dt
‖ γ̇ ‖2=

d

dt
(γ̇ · γ̇) = 2γ̈ · γ̇.

Since γ is a geodesic, γ̈ is perpendicular to the tangent plane and is therefore

perpendicular to the tangent vector γ̇. So γ̈ · γ̇ = 0 and the last equation shows

that ‖ γ̇ ‖ is constant.

It follows from this proposition that a unit-speed reparametrization of a

geodesic γ is still a geodesic. For, if ‖ γ̇ ‖= λ, then γ̃(t) = γ(t/λ) is a unit-

speed reparametrization of γ and d2γ̃
dt2

= 1
λ2

d2γ
dt2 is parallel to γ̈, and hence is

also perpendicular to the surface. Thus, we can always restrict to unit-speed

geodesics if we wish. In general, however, a reparametrization of a geodesic will

not be a geodesic (see Exercise 9.1.2).

We observe next that there is an equivalent definition of a geodesic expressed

in terms of the geodesic curvature κg (see Section 7.3). Of course, this is why

κg is called the geodesic curvature !

Proposition 9.1.3

A unit-speed curve on a surface is a geodesic if and only if its geodesic curvature

is zero everywhere.
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Proof

Let γ be a unit-speed curve on the surface S, and let p∈ S. Let σ be a surface

patch of S with p in its image, and let N be the standard unit normal of σ, so

that

κg = γ̈ · (N× γ̇) (9.1)

(changing σ may change the sign of N, and hence that of κg, but that is

not relevant to the present discussion). If γ̈ is parallel to N, it is obviously

perpendicular to N× γ̇, so by Eq. 9.1, κg = 0.

Conversely, suppose that κg = 0. Then, γ̈ is perpendicular to N × γ̇. But

then, since γ̇, N and N × γ̇ are perpendicular unit vectors in R3 (see the

discussion in Section 7.3), and since γ̈ is perpendicular to γ̇, it follows that γ̈

is parallel to N.

The following result gives the simplest examples of geodesics.

Proposition 9.1.4

Any (part of a) straight line on a surface is a geodesic.

By this, we mean that every straight line can be parametrized so that it is

a geodesic. A similar remark applies to other geodesics we consider and whose

parametrization is not specified (see Exercise 9.1.2).

Proof

This is obvious, for any straight line has a (constant speed) parametrization of

the form

γ(t) = a+bt,

where a and bare constant vectors, and clearly γ̈ = 0.

Example 9.1.5

All straight lines in the plane are geodesics, as are the rulings of any ruled

surface, such as those of a (generalized) cylinder or a (generalized) cone, or the

straight lines on a hyperboloid of one sheet.

The next result is almost as simple:
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Proposition 9.1.6

Any normal section of a surface is a geodesic.

Proof

Recall from Section 7.3 that a normal section of a surface S is the intersection

C of S with a plane Π , such that Π is perpendicular to the surface at each point

of C. We showed in Corollary7.3.4 that κg = 0 for a normal section, and so the

result follows from Proposition 9.1.3.

Example 9.1.7

All great circles on a sphere are geodesics. For a great circle is the intersection of

P

O

Π

the sphere with a plane Π passing through the centre O of the sphere, and so

if P is a point of the great circle, the straight line through O and P lies in

Π and is perpendicular to the tangent plane of the sphere at P . Hence, Π is

perpendicular to the tangent plane at P .

Example 9.1.8

The intersection of a generalized cylinder with a plane Π perpendicular to the

rulings of the cylinder is a geodesic. For it is clear that the unit normal N is

perpendicular to the rulings. It follows that N is parallel to Π, and hence that

Π is perpendicular to the tangent plane.
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N

Π

EXERCISES

9.1.1 Describe four different geodesics on the hyperboloid of one sheet

x2 + y2 − z2 = 1

passing through the point (1, 0, 0).

9.1.2 A (regular) curve γ with nowhere vanishing curvature on a surface

S is called a pre-geodesic on S if some reparametrization of γ is a

geodesic on S (recall that a reparametrization of a geodesic is not

usually a geodesic). Show that:

(i) A curve γ is a pre-geodesic if and only if γ̈ · (N× γ̇) = 0 every-

where on γ (in the notation of the proof of Proposition 9.1.3).

(ii) Any reparametrization of a pre-geodesic is a pre-geodesic.

(iii) Any constant speed reparametrization of a pre-geodesic is a

geodesic.

(iv) A pre-geodesic is a geodesic if and only if it has constant speed.

9.1.3 Consider the tube of radius a > 0 around a unit-speed curve γ in

R3 defined in Exercise 4.2.7:

σ(s, θ) = γ(s) + a(cos θn(s) + sin θ b(s)).

Show that the parameter curves on the tube obtained by fixing the

value of s are circular geodesics on σ.
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9.1.4 Let γ(t) be a geodesic on an ellipsoid S (see Theorem 5.2.2(i)). Let

2R(t) be the length of the diameter of S parallel to γ̇(t), and let S(t)

be the distance from the centre of S to the tangent plane Tγ(t)S.

Show that the curvature of γ is S(t)/R(t)2, and that the product

R(t)S(t) is independent of t.

9.1.5 Show that a geodesic with nowhere vanishing curvature is a plane

curve if and only if it is a line of curvature.

9.1.6 Let S1 and S2 be two surfaces that intersect in a curve C, and let γ

be a unit-speed parametrization of C.

(i) Show that if γ is a geodesic on both S1 and S2 and if the curvature

of γ is nowhere zero, then S1 ad S2 touch along γ (i.e., they have

the same tangent plane at each point of C). Give an example of

this situation.

(ii) Show that if S1 and S2 intersect orthogonally at each point of C,

then γ is a geodesic on S1 if and only if Ṅ2 is parallel to N1 at

each point of C (where N1 and N2 are unit normals of S1 and

S2). Show also that, in this case, γ is a geodesic on both S1 and

S2 if and only if C is part of a straight line.

9.2 Geodesic equations

Unfortunately, Propositions 9.1.4 and 9.1.6 are not usually sufficient to deter-

mine all the geodesics on a given surface. For that, we need the following result:

Theorem 9.2.1

A curve γ on a surface S is a geodesic if and only if, for any part γ(t) =

σ(u(t), v(t)) of γ contained in a surface patch σ of S, the following two equa-

tions are satisfied:

d

dt
(Eu̇+ F v̇) =

1

2
(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2),

d

dt
(F u̇+Gv̇) =

1

2
(Evu̇

2 + 2Fvu̇v̇ +Gvv̇
2),

(9.2)

where Edu2 + 2Fdudv +Gdv2 is the first fundamental form of σ.

The differential equations (9.2) are called the geodesic equations.
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Proof

Since {σu,σv} is a basis of the tangent plane of σ, γ is a geodesic if and only

if γ̈ is perpendicular to σu and σv. Since γ̇ = u̇σu + v̇σv, this is equivalent to
(

d

dt
(u̇σu + v̇σv)

)

· σu = 0 and

(

d

dt
(u̇σu + v̇σv)

)

· σv = 0. (9.3)

We show that these two equations are equivalent to the two geodesic equations.

The left-hand side of the first equation in (9.3) is equal to

d

dt
((u̇σu + v̇σv) · σu)− (u̇σu + v̇σv) ·

dσu

dt

=
d

dt
(Eu̇+ F v̇)− (u̇σu + v̇σv) · (u̇σuu + v̇σuv) ( 9.4)

=
d

dt
(Eu̇+ F v̇)− (u̇2(σu · σuu) + u̇v̇(σu · σuv + σv · σuu) + v̇

2(σv · σuv)).

Now,

Eu = (σu · σu)u = σuu · σu + σu · σuu = 2σu · σuu,

so σu · σuu = 1
2Eu. Similarly, σv · σuv = 1

2Gu. Finally,

σu · σuv + σv · σuu = (σu · σv)u = Fu.

Substituting these values into (9.4) gives
(

d

dt
(u̇σu + v̇σv)

)

· σu =
d

dt
(Eu̇ + F v̇)−

1

2
(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2).

This shows that the first equation in (9.3) is equivalent to the first geodesic

equation in (9.2). Similarly for the other equations.

The geodesic equations are non-linear differential equations, and are usually

difficult or impossible to solve explicitly. The following example is one case in

which this can be done. Another is given in Exercise 9.2.3.

Example 9.2.2

We determine the geodesics on the unit sphere S2 by solving the geodesic

equations. For the usual parametrization by latitude θ and longitude ϕ,

σ(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ),

we found in Example 6.1.3 that the first fundamental form is

dθ2 + cos2 θ dϕ2.
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We might as well restrict ourselves to unit-speed curves γ(t) = σ(θ(t), ϕ(t)),

so that

θ̇2 + ϕ̇2 cos2 θ = 1,

and if γ is a geodesic the second equation in (9.2) gives

d

dt
(ϕ̇ cos2 θ) = 0,

so that

ϕ̇ cos2 θ = Ω,

where Ω is a constant. If Ω = 0, then ϕ̇ = 0 and so ϕ is constant and γ is part

of a meridian. We assume that ϕ̇ �= 0 from now on.

The unit-speed condition gives

θ̇2 = 1− Ω2

cos2 θ
,

so along the geodesic we have

(

dθ

dϕ

)2

=
θ̇2

ϕ̇2
= cos2 θ(Ω−2 cos2 θ − 1),

and hence

±(ϕ− ϕ0) =

∫

dθ

cos θ
√
Ω−2 cos2 θ − 1

,

where ϕ0 is a constant. The integral can be evaluated by making the substitu-

tion u = tan θ. This gives

±(ϕ− ϕ0) =

∫

du√
Ω−2 − 1− u2

= sin−1

(

u√
Ω−2 − 1

)

,

and hence

tan θ = ±
√

Ω−2 − 1 sin(ϕ− ϕ0).

This implies that the coordinates x = cos θ cosϕ, y = cos θ sinϕ and z = sin θ

of γ(t) satisfy the equation

z = ax+ by,

where a = ∓
√
Ω−2 − 1 sinϕ0, and b = ±

√
Ω−2 − 1 cosϕ0. This shows that γ is

contained in the intersection of S2 with a plane passing through the origin.

Hence, in all cases, γ is part of a great circle.

The geodesic equations can be expressed in a different, but equivalent, form

which is sometimes more useful than that in Theorem 9.2.1.
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Proposition 9.2.3

A curve γ on a surface S is a geodesic if and only if, for any part γ(t) =

σ(u(t), v(t)) of γ contained in a surface patch σ of S, the following two equa-

tions are satisfied:

ü+ Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2 =0

v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2 =0.

Proof

As we noted after Definition 9.1.1, γ is a geodesic if and only if γ̇ is parallel

along γ. Since γ̇ = u̇σu+v̇σv, the equations in the statement of the proposition

follow from Proposition 7.4.5.

It can of course be verified directly that the differential equations in Propo-

sition 9.2.3 are equivalent to those in Theorem 9.2.1 (see Exercise 9.2.6).

Proposition 9.2.3 makes it obvious that the geodesic equations are second-

order ordinary differential equations for the functions u(t) and v(t). Even

though we may be unable in many situations to solve these equations explicitly,

the general theory of ordinary differential equations provides valuable informa-

tion about their solutions. This leads to the following result, which tells us

exactly ‘how many’ geodesics there are.

Proposition 9.2.4

Let p be a point of a surface S, and let t be a unit tangent vector to S at p.

Then, there exists a unique unit-speed geodesic γ on S which passes through

p and has tangent vector t there.

In short, there is a unique geodesic through any given point of a surface in

any given tangent direction.

Proof

The geodesic equations in Proposition 9.2.3 are of the form

ü = f(u, v, u̇, v̇), v̈ = g(u, v, u̇, v̇), (9.5)

where f and g are smooth functions of the four variables u, v, u̇ and v̇. It

is proved in the theory of ordinary differential equations that, for any given

constants a, b, c, and d, and any value t0 of t, there is a solution of Eqs. 9.5

such that
u(t0) = a, v(t0) = b, u̇(t0) = c, v̇(t0) = d, (9.6)
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and such that u(t) and v(t) are defined and smooth for all t satisfying |t− t0| <

ǫ, where ǫ is some positive number. Moreover, any two solutions of Eqs. 9.5

satisfying (9.6) agree for all values of t such that |t− t0| < ǫ′, where ǫ′ is some

positive number ≤ ǫ.

We now apply these facts to the geodesic equations. Suppose that p lies in

a patch σ(u, v) of S, say p = σ(a, b), and that t = cσu+dσv, where a, b, c, and

d are scalars and the derivatives are evaluated at u = a, v = b. A unit-speed

curve γ(t) = σ(u(t), v(t)) passes through p at t = t0 if and only if u(t0) = a,

v(t0) = b, and has tangent vector t there if and only if

cσu + dσv = t = γ̇(t0) = u̇(t0)σu + v̇(t0)σv,

i.e., u̇(t0) = c, v̇(t0) = d. Thus, finding a (unit-speed) geodesic γ passing

through p at t = t0 and having tangent vector t is equivalent to solving the

geodesic equations subject to the initial conditions (9.6). But we have said

above that this problem has a unique solution.

Example 9.2.5

We already know that all straight lines in a plane are geodesics. Since there is

a straight line in the plane through any given point of the plane in any given

direction parallel to the plane, it follows from Proposition 9.2.4 that there are

no other geodesics.

Example 9.2.6

Similarly, on a sphere, the great circles are the only geodesics, for there is

clearly a great circle passing through any given point of the sphere in any given

direction tangent to the sphere. (If p is the point and t the tangent direction,

let Π be the plane passing through the origin parallel to p and t (i.e., with

normal p× t); then take the intersection of the sphere with Π.)

The following consequence of Theorem 9.2.1 can also be used in some cases

to find geodesics without solving the geodesic equations.

Corollary 9.2.7

Any local isometry between two surfaces takes the geodesics of one surface to

the geodesics of the other.
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Proof

Let S1 and S2 be the two surfaces, let f : S1 → S2 be the local isometry,

and let γ1 be a geodesic on S1. Let p be a point on γ1 and let σ(u, v) be

a surface patch of S1 with p in its image. Then, the part of γ1 lying in the

patch σ is of the form γ1(t) = σ(u(t), v(t)) with a < t < b, say, where the

smooth functions u and v satisfy the geodesic equations (9.2), with E, F and

G being the coefficients of the first fundamental form of σ. By Corollary6.2.3,

f ◦ σ is a patch of S2 with the same first fundamental form as σ. Hence, by

Theorem 9.2.1, γ2(t) = f(σ(u(t), v(t))), with a < t < b, is a geodesic on S2.

This implies that γ̈2 is perpendicular to S2 at f(p). As this is true for all p,

γ2 is a geodesic on S2.

Example 9.2.8

On the unit cylinder S given by x2+ y2 = 1, we know that the circles obtained

by intersecting S with planes parallel to the xy-plane are geodesics (since they

are normal sections). We also know that the straight lines on S parallel to the

z-axis are geodesics. However, these are certainly not the only geodesics, for

there is only one geodesic of each of the two types passing through each point

of S (whereas we know that there is a geodesic passing through each point in

any given tangent direction).

To find the missing geodesics, we recall that S is locally isometric to the

plane (see Example 6.2.4). In fact, the local isometry takes the point (u, v, 0)

of the xy-plane to the point (cosu, sinu, v) ∈ S. By Corollary 9.2.7, this map

takes geodesics on the plane (i.e., straight lines) to geodesics on S, and vice

versa. So to find all the geodesics on S, we have only to find the images under

the local isometry of all the straight lines in the plane. Any line not parallel to

the y-axis has equation y = mx+c, wherem and c are constants. Parametrizing

this line by x = u, y = mu+ c, we see that its image is the curve

γ(u) = (cosu, sinu,mu+ c)

on S. Comparing with Example 2.1.3, we see that this is a circular helix of

radius one and pitch 2π|m| (adding c to the z-coordinate just translates the
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helix vertically). Note that if m = 0, we get the circular geodesics that we

already know. Finally, any straight line in the xy-plane parallel to the y-axis

is mapped by the local isometry to a straight line on S parallel to the z-axis,

giving the other family of geodesics that we already know.

EXERCISES

9.2.1 Show that, if p and q are distinct points of the unit cylinder, there

are either two or infinitely many geodesics on the cylinder with end-

points p and q (and which do not otherwise pass through p or q).

Which pairs p,q have the former property?

9.2.2 Use Corollary 9.2.7 to find all the geodesics on a circular cone.

9.2.3 Find the geodesics on the unit cylinder by solving the geodesic

equations.

9.2.4 Consider the following three properties that a curve γ on a surface

may have:

(i) γ has constant speed.

(ii) γ satisfies the first of the geodesic equations (9.2).

(iii) γ satisfies the second of the geodesic equations (9.2).

Show, without using Theorem 9.2.1, that (ii) and (iii) together imply

(i). Show also that if (i) holds and if γ is not a parameter curve, then

(ii) and (iii) are equivalent.

9.2.5 Let γ(t) be a unit-speed curve on the helicoid

σ(u, v) = (u cos v, u sin v, v)

(Exercise 4.2.6). Show that

u̇2 + (1 + u2)v̇2 = 1

(a dot denotes d/dt). Show also that, if γ is a geodesic on σ, then

v̇ =
a

1 + u2
,

where a is a constant. Find the geodesics corresponding to a = 0

and a = 1.

Suppose that a geodesic γ on σ intersects a ruling at a point p a

distance D > 0 from the z-axis, and that the angle between γ and

the ruling at p is α, where 0 < α < π/2. Show that the geodesic
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intersects the z-axis if D > cotα, but that if D < cotα its smallest

distance from the z-axis is
√

D2 sin2 α− cos2 α. Find the equation

of the geodesic if D = cotα.

9.2.6 Verify directly that the differential equations in Proposition 9.2.3 are

equivalent to the geodesic equations in Theorem 9.2.1.

9.3 Geodesics on surfaces of revolution

It turns out that, although the geodesic equations for a surface of revolution

cannot usually be solved explicitly, they can be used to get a good qualitative

understanding of the geodesics on such a surface.

We parametrize the surface of revolution in the usual way

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

where we assume that f > 0 and
(

df
du

)2

+
(

dg
du

)2

= 1 (see Example 5.3.2 – we

used a dot there to denote d/du, but now a dot is reserved for d/dt, where t

is the parameter along a geodesic). We found in Example 6.1.3 that the first

fundamental form of σ is du2 + f(u)2dv2. Referring to Eq. 9.2,

ü = f(u)
df

du
v̇2,

d

dt
(f(u)2v̇) = 0. (9.7)

We might as well consider unit-speed geodesics, so that

u̇2 + f(u)2v̇2 = 1. (9.8)

From this, we make the following easy deductions:

Proposition 9.3.1

On the surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

(i) Every meridian is a geodesic.

(ii) A parallel u = u0 (say) is a geodesic if and only if df/du = 0 when u = u0,

i.e., u0 is a stationary point of f .
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Proof

On a meridian, we have v = constant so the second equation in (9.7) is obviously

satisfied. Equation 9.8 gives u̇ = ±1, so u̇ is constant and the first equation in

(9.7) is also satisfied.

geodesics

For (ii), note that if u = u0 is constant, then by Eq. 9.8, v̇ = ±1/f(u0) is

non-zero, and so the first equation in (9.7) holds only if df/du = 0. Conversely,

if df/du = 0 when u = u0, the first equation in (9.7) obviously holds, and the

second holds because v̇ = ±1/f(u0) and f(u) = f(u0) are constant.

Of course, this proposition only gives some of the geodesics on a surface of

revolution. The following result is very helpful in understanding the remaining

geodesics.

Proposition 9.3.2 (Clairaut’s Theorem)

Let γ be a unit-speed curve on a surface of revolution S, let ρ : S → R be

the distance of a point of S from the axis of rotation, and let ψ be the angle

between γ̇ and the meridians of S. If γ is a geodesic, then ρ sinψ is constant

along γ. Conversely, if ρ sinψ is constant along γ, and if no part of γ is part

of some parallel of S, then γ is a geodesic.

By a ‘part’ of γ we mean γ(J), where J is an open interval. The

hypothesis there cannot be relaxed, for on a parallel ψ = π/2, and so ρ sinψ
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is certainly constant. But parallels are not geodesics in general, as Proposi-

tion 9.3.1(ii) shows.

S

°

°
¾u

¾v

Ã

:

P

Proof

Parametrizing S as in Proposition 9.3.1, we have ρ = f(u). Note that σu and

ρ−1σv are unit vectors tangent to the meridians and parallels, respectively, and

that they are perpendicular since F = 0. Assuming that γ(t) = σ(u(t), v(t)) is

unit-speed, we have

γ̇ = cosψσu + ρ−1 sinψσv

(this equation actually serves to define the sign of ψ, which is left ambiguous

in the statement of Clairaut’s Theorem). Hence,

σu × γ̇ = ρ−1 sinψσu × σv.

Since γ̇ = u̇σu + v̇σv, this gives

v̇σu × σv = ρ−1 sinψσu × σv.

Hence, ρv̇ = sinψ and so

ρ sinψ = ρ2v̇.

But the second equation in (9.7) shows that this is a constant, say Ω, along the

geodesic.
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For the converse, if ρ sinψ is a constant Ω along a unit-speed curve γ in S,

the above argument shows that the second equation in (9.7) is satisfied, and

we must show that the first equation in (9.7) is satisfied too. Since

v̇ =
sinψ

ρ
=

Ω

ρ2
, (9.9)

Eq. 9.8 gives

u̇2 = 1−
Ω2

ρ2
. (9.10)

Differentiating both sides with respect to t gives

2u̇ü =
2Ω2

ρ3
ρ̇ =

2Ω2

ρ3
dρ

du
u̇,

∴ u̇

(

ü− ρ
dρ

du
v̇2
)

= 0.

If the term in brackets does not vanish at some point of the curve, say at

γ(t0) = σ(u0, v0), there will be a number ǫ > 0 such that it does not vanish

for |t − t0| < ǫ. But then u̇ = 0 for |t − t0| < ǫ, and so γ coincides with the

parallel u = u0 when |t− t0| < ǫ, contrary to our assumption. Hence, the term

in brackets must vanish everywhere on γ, i.e.,

ü = ρ
dρ

du
v̇2,

showing that the first equation in (9.7) is indeed satisfied.

Clairaut’s Theorem has a simple mechanical interpretation. Recall that the

geodesics on a surface S are the curves traced on S by a particle subject to no

forces except a force normal to S that constrains it to move on S. When S is

a surface of revolution, the force at a point p ∈ S lies in the plane containing

the axis of revolution and p, and so has no moment about the axis. It follows

that the angular momentum Ω of the particle about the axis is constant. But,

if the particle moves along a unit-speed geodesic, the component of its velocity

along the parallel through p is sinψ, so its angular momentum about the axis

is proportional to ρ sinψ.

Example 9.3.3

We use Clairaut’s theorem to determine the geodesics on the pseudosphere:

σ(u, v) = (eu cos v, eu sin v,
√

1− e2u − cosh−1(e−u)).



9.3 Geodesics on surfaces of revolution 231

We found in Section 8.3 that its first fundamental form is

du2 + e2udv2.

It is convenient to reparametrize by setting w = e−u. The reparametrized

surface is

σ̃(v, w) =

(
1

w
cos v,

1

w
sin v,

√

1−
1

w2
− cosh−1 w

)

,

and its first fundamental form is

dv2 + dw2

w2
. (9.11)

We must have w > 1 for σ̃ to be well defined and smooth.

If γ(t) = σ̃(v(t), w(t)) is a unit-speed geodesic, the unit-speed condition

gives

v̇2 + ẇ2 = w2, (9.12)

and Clairaut’s theorem gives

1

w
sinψ =

1

w2
v̇ = Ω, (9.13)

where Ω is a constant, since ρ = 1/w. Thus, v̇ = Ωw2. If Ω = 0, we get a

meridian v = constant. Assuming now that Ω �= 0 and substituting in Eq. 9.12

gives

ẇ = ±w
√

1− Ω2w2.

Hence, along the geodesic,

dv

dw
=

v̇

ẇ
= ± Ωw√

1− Ω2w2
,

∴ (v − v0) = ∓ 1

Ω

√

1− Ω2w2, (9.14)

∴ (v − v0)
2 + w2 =

1

Ω2
,

where v0 is a constant. So the geodesics are the images under σ̃ of the parts

of the circles in the vw-plane given by Eq. 9.14 and lying in the region w > 1.

Note that these circles all have centre on the v-axis, and so intersect the v-axis

perpendicularly. The meridians correspond to straight lines perpendicular to

the v-axis.
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v

w

1

The corresponding geodesics on the pseudosphere itself are shown below.

Note that the geodesics cannot be extended indefinitely, in one direction in the

case of the meridians and in both directions for the others. This is because the

geodesics ‘run into’ the circular edge of the pseudosphere in the xy-plane. A bug

walking at constant speed along such a geodesic would reach the edge in a finite

time, and thus would suffer the fate feared by ancient mariners of falling off

the edge of the world. In terms of the vw-plane, the reason for this is that the

line w = 1 is a boundary of the region that corresponds to the pseudosphere

and the straight lines and semicircles that correspond to the geodesics cross

this line.

Clairaut’s theorem can often be used to determine the qualitative behaviour

of the geodesics on a surface S, when solving the geodesic differential equations

explicitly may be difficult or impossible. Note first that, in general, there are

two geodesics passing through any given point p ∈ S with a given angular

momentum Ω, for v̇ is determined by Eq. 9.9 and u̇ up to sign by Eq. 9.10. In

fact, one geodesic is obtained from the other by reflecting in the plane through

p containing the of rotation (which changes Ω to −Ω) followed by changing the

parameter t of the geodesic to −t (which changes the angular momentum back

to Ω again).

The discussion in the preceding paragraph shows that we may as well assume

that Ω > 0, which we do from now on. Then, Eq. 9.10 shows that the geodesic

is confined to the part of S which is at a distance ≥ Ω from the axis.
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If all of S is a distance > Ω from the axis, the geodesic will cross every

parallel of S. For otherwise, u would be bounded above or below on S, say the

former. Let u0 be the least upper bound of u on the geodesic, and let Ω + 2ǫ,

where ǫ > 0, be the radius of the parallel u = u0. If u is sufficiently close to u0,

the radius of the corresponding parallel will be ≥ Ω+ ǫ, and on the part of the

geodesic lying in this region we shall have

|u̇| ≥

√

1−
(

Ω

Ω+ ǫ

)2

> 0

by Eq. 9.10. But this clearly implies that the geodesic will cross u = u0, con-

tradicting our assumption.

Thus, the interesting case is that in which part of S is within a distance Ω

of the axis. The discussion of this case will be clearer if we consider a concrete

example whose geodesics nevertheless exhibit essentially all possible forms of

behaviour.

Example 9.3.4

We consider the hyperboloid of one sheet obtained by rotating the hyperbola

x2 − z2 = 1, x > 0,

in the xz-plane around the z-axis. Since all of the surface is at a distance ≥ 1

from the z-axis, we have seen above that, if 0 ≤ Ω < 1, a geodesic with angular

momentum Ω crosses every parallel of the hyperboloid and so extends from

z = −∞ to z = ∞.

0 < Ω < 1
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Suppose now that Ω > 1. Then the geodesic is confined to one of the two regions

z ≥
√

Ω2 − 1, z ≤ −
√

Ω2 − 1,

which are bounded by circles Γ+ and Γ−, respectively, of radius Ω. Let p be a

point on Γ−, and consider the geodesic C that passes through p and is tangent to

Γ− there. Then, ψ = π/2 and ρ = Ω at p, so C has angular momentum Ω. Now C
cannot be contained in Γ−, since Γ− is not a geodesic (by Proposition 9.3.1(ii)),

so C must head into the region below Γ− as it leaves p. Moreover, C must be

symmetric about p, since reflection in the plane through p containing the z-axis

takes C to another geodesic that also passes through p and is tangent to Γ−

there, and so must coincide with C by the uniqueness part of Corollary9.2.4.

Since u̇ �= 0 in the region below Γ− by Eq. 9.10, the geodesic crosses every

parallel below Γ− and z → −∞ as t → ±∞.

Suppose now that C̃ is any geodesic with angular momentum Ω > 1 in

the region below Γ−. Then a suitable rotation around the z-axis will cause C̃
to intersect C, say at q, and so to coincide with it (possibly after reflecting

in the plane through q containing the z-axis and changing t to −t). We have

therefore described the behaviour of every geodesic with angular momentum

Ω > 1 that is confined to the region below Γ−. Of course, the geodesics with

angular momentum Ω > 1 in the region above Γ+ are obtained by reflecting

those below Γ− in the xy-plane.

Suppose finally that Ω = 1. Let C be a geodesic with angular momentum 1

passing through a point p. If p is on the waist Γ of the hyperboloid (i.e., the

unit circle in the xy-plane), which is a geodesic by Proposition 9.3.1(ii), then

ρ = 1 at p and so ψ = π/2 and C is tangent to Γ at p. It must therefore coincide

with Γ. If, on the other hand, p is in the region below Γ, then 0 < ψ < π/2
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at p, so as it leaves p in one direction, C approaches Γ. It must in fact get

arbitrarily close to Γ. For if it were to stay always below a parallel Γ̃ of radius

1 + ǫ, say (with ǫ > 0), then we would have

|u̇| ≥

√

1−
(

1

1 + ǫ

)2

everywhere along C by Eq. 9.10, which clearly implies that C must cross every

parallel, contradicting our assumption. So, if Ω = 1, the geodesic spirals around

the hyperboloid approaching, and getting arbitrarily close to, Γ but never quite

reaching it.

EXERCISES

9.3.1 There is another way to see that all the meridians, and the parallels

corresponding to the stationary points of f , are geodesics on a surface

of revolution considered in this section. What is it?

9.3.2 Describe qualitatively the geodesics on:

(i) A spheroid, obtained by rotating an ellipse around one of its

axes.

(ii) A torus (Exercise 4.2.5).

9.3.3 Show that a geodesic on the pseudosphere with non-zero angular

momentum Ω intersects itself if and only if Ω < (1 + π2)−1/2. How

many self-intersections are there in that case?

9.3.4 Show that if we reparametrize the pseudosphere as in Exercise

8.3.1(ii), the geodesics on the pseudosphere correspond to segments

of straight lines and circles in the parameter plane that intersect the

boundary of the disc orthogonally. Deduce that, in the parametriza-

tion of Exercise 8.3.1(iii), the geodesics correspond to segments of

straight lines in the parameter plane. We shall see in Section 10.4

that there are very few surfaces that have parametrizations with this

property.

9.4 Geodesics as shortest paths

Everyone knows that the straight line segment joining two points p and q

in a plane is the shortest path between p and q (see Exercise 1.2.4). It is
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almost as well known that great circles are the shortest paths on a sphere

(Proposition 6.5.1). And we have seen that the straight lines are the geodesics

in a plane, and the great circles are the geodesics on a sphere.

To see the connection between geodesics and shortest paths on an arbitrary

surface S, we consider a unit-speed curve γ on S passing through two fixed

points p,q ∈ S. If γ is a shortest path on S from p to q, then the part of γ

contained in any surface patch σ of S must be the shortest path between any

two of its points. For if p′ and q′ are any two points of γ in (the image of) σ,

and if there were a shorter path in σ from p′ to q′ than γ, we could replace the

part of γ between p′ and q′ by this shorter path, thus giving a shorter path

from p to q in S.
We may therefore consider a path γ entirely contained in a surface patch σ.

To test whether γ has smaller length than any other path in σ passing through

two fixed points p,q on σ; we embed γ in a smooth family of curves on σ

passing through p and q. By such a family, we mean a curve γτ on σ, for each

τ in an open interval (−δ, δ), such that

(i) there is an ǫ > 0 such that γτ (t) is defined for all t ∈ (−ǫ, ǫ) and all

τ ∈ (−δ, δ);

(ii) for some a, b with −ǫ < a < b < ǫ, we have

γτ (a) = p and γτ (b) = q for all τ ∈ (−δ, δ);

(iii) the map from the rectangle (−δ, δ)× (−ǫ, ǫ) into R3 given by

(τ, t) �→ γτ (t)

is smooth;

(iv) γ0 = γ.

p

q

°¿

°

The length of the part of γτ between p and q is

L(τ) =
∫ b

a

‖ γ̇τ ‖ dt,

where a dot denotes d/dt.
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Theorem 9.4.1

With the above notation, the unit-speed curve γ is a geodesic if and only if

d

dτ
L(τ) = 0 when τ = 0

for all families of curves γτ with γ0 = γ.

Note that although we assumed that γ = γ0 is unit-speed, we cannot assume

that γτ is unit-speed if τ �= 0, as this would imply that the length of the segment

of γτ corresponding to a ≤ t ≤ b is independent of τ .

Proof

We use the formula for ‘differentiating under the integral sign’ : if f(τ, t) is

smooth,
d

dτ

∫

f(τ, t)dt =

∫

∂f

∂τ
dt.

Thus,

d

dτ
L(τ) = d

dτ

∫ b

a

‖ γ̇τ ‖ dt

=
d

dτ

∫ b

a

(Eu̇2 + 2F u̇v̇ +Gv̇2)1/2 dt

=

∫ b

a

∂

∂τ
(g(τ, t)1/2) dt (9.15)

=
1

2

∫ b

a

g(τ, t)−1/2 ∂g

∂τ
dt,

where
g(τ, t) = Eu̇2 + 2F u̇v̇ +Gv̇2

and a dot denotes d/dt. Now,

∂g

∂τ
=

∂E

∂τ
u̇2 + 2

∂F

∂τ
u̇v̇ +

∂G

∂τ
v̇2 + 2Eu̇

∂u̇

∂τ
+ 2F

(

∂u̇

∂τ
v̇ + u̇

∂v̇

∂τ

)

+ 2Gv̇
∂v̇

∂τ

=

(

Eu
∂u

∂τ
+ Ev

∂v

∂τ

)

u̇2 + 2

(

Fu
∂u

∂τ
+ Fv

∂v

∂τ

)

u̇v̇ +

(

Gu
∂u

∂τ
+Gv

∂v

∂τ

)

v̇2

+ 2Eu̇
∂2u

∂τ∂t
+ 2F

(

∂2u

∂τ∂t
v̇ + u̇

∂2v

∂τ∂t

)

+ 2Gv̇
∂2v

∂τ∂t

= (Euu̇
2 + 2Fuu̇v̇ +Guv̇

2)
∂u

∂τ
+ (Evu̇

2 + 2Fvu̇v̇ +Gv v̇
2)
∂v

∂τ

+ 2(Eu̇+ F v̇)
∂2u

∂τ∂t
+ 2(F u̇+Gv̇)

∂2v

∂τ∂t
.
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The contribution to the integral in Eq. 9.15 coming from the terms involving

the second partial derivatives is

∫ b

a

g−1/2

{

(Eu̇ + F v̇)
∂2u

∂τ∂t
+(F u̇+Gv̇)

∂2v

∂τ∂t

}

dt

= g−1/2

{

(Eu̇+ F v̇)
∂u

∂τ
+ (F u̇+Gv̇)

∂v

∂τ

}∣

∣

∣

∣

t=b

t=a

(9.16)

−

∫ b

a

(

∂

∂t

{

g−1/2(Eu̇+ F v̇)
} ∂u

∂τ
+

∂

∂t

{

g−1/2(F u̇+Gv̇)
} ∂v

∂τ

)

dt,

using integration by parts. Now, since γτ (a) and γτ (b) are independent of τ

(being equal to p and q, respectively), we have

∂γτ

∂τ
= 0 when t = a or b.

Since
∂γτ

∂τ
=

∂u

∂τ
σu +

∂v

∂τ
σv,

we see that
∂u

∂τ
=

∂v

∂τ
= 0 when t = a or b.

Hence, the first term on the right-hand side of Eq. 9.16 is zero. Inserting the

remaining terms in Eq. 9.16 back into Eq. 9.15, we get

d

dτ
L(τ) =

∫ b

a

(

U
∂u

∂τ
+ V

∂v

∂τ

)

dt, (9.17)

where

U(τ, t) =
1

2
g−1/2(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2)−

d

dt

{

g−1/2(Eu̇+ F v̇)
}

,

V (τ, t) =
1

2
g−1/2(Evu̇

2 + 2Fvu̇v̇ +Gv v̇
2)−

d

dt

{

g−1/2(F u̇+Gv̇)
}

. (9.18)

Now γ0 = γ is unit-speed, so since ‖ γ̇τ ‖2= g(τ, t), we have g(τ, t) = 1 for all

t when τ = 0. Comparing Eq. 9.18 with the geodesic equations in (9.2), we see

that, if γ is a geodesic, then U = V = 0 when τ = 0, and hence by Eq. 9.17,

d

dτ
L(τ) = 0 when τ = 0.

For the converse, we have to show that, if

∫ b

a

(

U
∂u

∂τ
+ V

∂v

∂τ

)

dt = 0 when τ = 0 (9.19)



9.4 Geodesics as shortest paths 239

for all families of curves γτ , then U = V = 0 when τ = 0 (since this will prove

that γ satisfies the geodesic equations). Assume, then, that condition (9.19)

holds, and suppose, for example, that U �= 0 when τ = 0. We will show that

this leads to a contradiction.

Since U �= 0 when τ = 0, there is some t0 ∈ (a, b) such that U(0, t0) �= 0,

say U(0, t0) > 0. Since U is a continuous function, there exists η > 0 such that

U(0, t) > 0 if t ∈ (t0 − η, t0 + η).

Let φ be a smooth function such that

φ(t) > 0 if t ∈ (t0 − η, t0 + η) and φ(t) = 0 if t /∈ (t0 − η, t0 + η). (9.20)

(The construction of such a function φ is outlined in Exercise 9.4.3.) Sup-

pose that γ(t) = σ(u(t), v(t)), and consider the family of curves γτ (t) =

σ(u(τ, t), v(τ, t)), where

u(τ, t) = u(t) + τφ(t), v(τ, t) = v(t).

Then, ∂u/∂τ = φ and ∂v/∂τ = 0 for all τ and t, so Eq. 9.19 gives

0 =

∫ b

a

(

U
∂u

∂τ
+ V

∂v

∂τ

)

∣

∣

∣

∣

∣

τ=0

dt =

∫ t0+η

t0−η

U(0, t)φ(t) dt. (9.21)

But U(0, t) and φ(t) are both > 0 for all t ∈ (t0 − η, t0 + η), so the integral

on the right-hand side of Eq. 9.21 is > 0. This contradiction proves that we

must have U(0, t) = 0 for all t ∈ (a, b). One proves similarly that V (0, t) = 0

for all t ∈ (a, b). Together, these results prove that γ satisfies the geodesic

equations.

It is worth making several comments on Theorem 9.4.1 to be clear about

what it implies, and also what it does not imply.

First, if γ is a shortest path on σ from p to q, then L(τ) must have an

absolute minimum when τ = 0. This implies that d
dτL(τ) = 0 when τ = 0, and

hence by Theorem 9.4.1 that γ is a geodesic.

Second, if γ is a geodesic on σ passing through p and q, then L(τ) has

a stationary point (extremum) when τ = 0, but this need not be an absolute

minimum, or even a local minimum, so γ need not be a shortest path from

p to q. For example, if p and q are two nearby points on a sphere, the short

great circle arc joining p and q is the shortest path from p to q (this is not

quite obvious – see below), but the long great circle arc joining p and q is also

a geodesic – see the diagram preceding Proposition 6.5.1.

Third, in general, a shortest path joining two points on a surface may not

exist. For example, consider the surface S consisting of the xy-plane with the

origin removed. This is a perfectly good surface, but there is no shortest path
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on the surface from the point p = (−1, 0) to the point q = (1, 0). Of course,

the shortest path should be the straight line segment joining the two points,

but this does not lie entirely on the surface, since it passes through the origin

which is not part of the surface. For a ‘real life’ analogy, imagine trying to walk

from p to q but finding that there is a deep hole in the ground at the origin.

The solution might be to walk in a straight line as long as possible, and then

skirt around the hole at the last minute, say taking something like the route

shown below. This path consists of two straight line segments of length 1 − ǫ,

together with a semicircle of radius ǫ, so its total length is

2(1− ǫ) + πǫ = 2 + (π − 2)ǫ.

Of course, this is greater than the straight line distance 2, but it can be made

as close as we like to 2 by taking ǫ sufficiently small. In the language of real

analysis, the greatest lower bound of the lengths of curves on the surface joining

p and q is 2, but there is no curve from p to q in the surface whose length is

equal to this lower bound.

p q

2

Finally, it can be proved that if a surface S is a closed subset of R3 (i.e., if

the set of points of R3 that are not in S is an open subset of R3), and if there is

some path in S joining any two points of S, then there is always a shortest path

joining any two points of S. For example, a plane is a closed subset of R3, and

so there is a shortest path joining any two points. This path must be a straight

line, for by the first remark above it is a geodesic, and we know that the only

geodesics on a plane are the straight lines. Similarly, a sphere is a closed subset

of R3, and it follows that the short great circle arc joining two points on the

sphere is the shortest path joining them. But the surface S considered above

is not a closed subset of R3, for (0, 0) /∈ S, but any open ball containing (0, 0)

must clearly contain points of S, and so the set of points not in S is not open.

Another property of surfaces that are closed subsets of R3 (that we shall also

not prove) is that geodesics on such surfaces can be extended indefinitely, i.e.,

they can be defined on the whole of R. This is clear for straight lines in the plane,

for example, and for great circles on the sphere (although in the latter case the

geodesics ‘close up’ after an increment in the unit-speed parameter equal to

the circumference of the sphere). But, for the straight line γ(t) = (t− 1, 0) on

the surface S defined above, which passes through p when t = 0, the largest

interval containing t = 0 on which it is defined as a curve in the surface is

(−∞, 1). We encountered a less artificial example of this ‘incompleteness’ in
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Example 9.3.3: the pseudosphere considered there fails to be a closed subset

of R3 because the points of its boundary circle in the xy-plane are not in the

surface.

EXERCISES

9.4.1 The geodesics on a circular (half) cone were determined in Exer-

cise 9.2.2. Interpreting ‘line’ as ‘geodesic’, which of the following

(true) statements in plane Euclidean geometry are true for the cone?

(i) There is a line passing through any two points.

(ii) There is a unique line passing through any two distinct points.

(iii) Any two distinct lines intersect in at most one point.

(iv) There are lines that do not intersect each other.

(v) Any line can be continued indefinitely.

(vi) A line defines the shortest distance between any two of its

points.

(vii) A line cannot intersect itself transversely (i.e., with two non-

parallel tangent vectors at the point of intersection).

9.4.2 Show that the long great circle arc on S2 joining the points

p = (1, 0, 0) and q = (0, 1, 0) is not even a local minimum of the

length function L (see the remarks following the proof of Theo-

rem 9.4.1).

9.4.3 Construct a smooth function with the properties in (9.20) in the

following steps:

(i) Show that, for all integers n (positive and negative), tne−1/t2

tends to 0 as t tends to 0.

(ii) Deduce from (i) that the function

θ(t) =

{
e−1/t2 if t ≥ 0,

0 if t ≤ 0

is smooth everywhere.

(iii) Show that the function

ψ(t) = θ(1 + t)θ(1 − t)

is smooth everywhere, that ψ(t) > 0 if −1 < t < 1, and that

ψ(t) = 0 otherwise.
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(iv) Show that the function

φ(t) = ψ

(

t− t0
η

)

has the properties we want.

9.5 Geodesic coordinates

The existence of geodesics on a surface S allows us to construct a very useful

atlas for S. For this, let p ∈ S and let γ, with parameter v say, be a unit-speed

geodesic on S with γ(0) = p. For any value of v, let γ̃v, with parameter u, say,

be a unit-speed geodesic such that γ̃v(0) = γ(v) and which is perpendicular

to γ at γ(v) (γ̃v is unique up to the reparametrization u �→ −u). We define

σ(u, v) = γ̃v(u).

Proposition 9.5.1

With the above notation, there is an open subset U of R2 containing (0, 0)

such that σ : U → R3 is an allowable surface patch of S. Moreover, the first

fundamental form of σ is

du2 +G(u, v)dv2,

where G is a smooth function on U such that

G(0, v) = 1, Gu(0, v) = 0,

whenever (0, v) ∈ U .

°
°(v)

°v˜

¾(u; v)

p
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Proof

The proof that σ is (for a suitable open set U) an allowable surface patch makes

use of the inverse function theorem (see Section 5.6).

Note first that, for any value of v,

σu(0, v) =
d

du
γ̃v(u)

(
(
(
(
u=0

, σv(0, v) =
d

dv
γ̃v(0) =

d

dv
γ(v),

and that these are perpendicular unit vectors by construction. If

σ(u, v) = (f(u, v), g(u, v), h(u, v)),

it follows that the Jacobian matrix
⎛

⎝

fu fv
gu gv
hu hv

⎞

⎠

has rank 2 when u = v = 0. Hence, at least one of its three 2× 2 submatrices

is invertible at (0, 0), say
(

fu fv
gu gv

)

. (9.22)

By the Inverse Function Theorem 5.6.1, there is an open subset U of R2 such

that the map given by

F (u, v) = (f(u, v), g(u, v))

is a bijection from U to an open subset F (U) of R2, and such that its inverse

map F (U) → U is also smooth. The matrix (9.22) is then invertible for all

(u, v) ∈ U , and so σu and σv are linearly independent for (u, v) ∈ U . It follows

that σ : U → R3 is a surface patch.

As to the first fundamental form of σ, note first that

E = ‖ σu ‖2=
∣

∣

∣

∣

∣

∣

∣

∣

d

du
γ̃v(u)

∣

∣

∣

∣

∣

∣

∣

∣

2

= 1

because γ̃v is a unit-speed curve. Next, we apply the second of the geodesic

equations (9.2) to γ̃v. The unit-speed parameter is u and v is constant, so

we get Fu = 0. But when u = 0, we have already seen that σu and σv are

perpendicular, so F = 0. It follows that F = 0 everywhere. Hence, the first

fundamental form of σ is

du2 +G(u, v)dv2.

We have

G(0, v) = ‖ σv(0, v) ‖2=
∣

∣

∣

∣

∣

∣

∣

∣

dγ

dv

∣

∣

∣

∣

∣

∣

∣

∣

2

= 1
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because γ is unit-speed. Finally, from the first geodesic equation in (9.2) applied

to the geodesic γ, for which u = 0 and v is the unit-speed parameter, we get

Gu(0, v) = 0.

A surface patch σ constructed as above is called a geodesic patch, and u

and v are called geodesic coordinates.

Example 9.5.2

If p is a point on the equator of the unit sphere S2, take γ to be the equator

with parameter the longitude ϕ, and let γ̃ϕ be the meridian parametrized by

latitude θ and passing through the point on the equator with longitude ϕ. The

corresponding geodesic patch is the usual latitude-longitude patch, for which

the first fundamental form is

dθ2 + cos2 θ dϕ2,

in accordance with Proposition 9.5.1.

We give an application of geodesic coordinates in the proof of

Theorem 10.3.1.

EXERCISES

9.5.1 Let P be a point of a surface S and let v be a unit tangent vector to

S at P . Let γθ(r) be the unit-speed geodesic on S passing through

P when r = 0 and such that the oriented angle
̂
v dγθ

dr = θ. It can be

shown that σ(r, θ) = γθ(r) is smooth for −ǫ < r < ǫ and all values

of θ, where ǫ is some positive number, and that it is an allowable

surface patch for S defined for 0 < r < ǫ and for θ in any open

interval of length ≤ 2π. This is called a geodesic polar patch on S.
Show that, if 0 < R < ǫ,

∫ R

0

∣

∣

∣

∣

∣

∣

∣

∣

dγθ

dr

∣

∣

∣

∣

∣

∣

∣

∣

2

dr = R.

By differentiating both sides with respect to θ, prove that

σr · σθ = 0.
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P

geodesics

geodesics

circle

This is called Gauss’ Lemma – geometrically, it means that the pa-

rameter curve r = R, called the geodesic circle with centre P and

radius R, is perpendicular to each of its radii, i.e., the geodesics

passing through P . Deduce that the first fundamental form of σ is

dr2 +G(r, θ)dθ2,

for some smooth function G(r, θ).

9.5.2 Let P and Q be two points on a surface S, and assume that there is

a geodesic polar patch with centre P as in Exercise 9.5.1 that also

contains Q; suppose that Q is the point σ(R,α), where 0 < R < ǫ,

0 ≤ α < 2π. Show in the following steps that the geodesic γα(t) =

σ(t, α) is (up to reparametrization) the unique shortest curve on S
joining P and Q.

(i) Let γ(t) = σ(f(t), g(t)) be any curve in the patch σ joining

P and Q. We assume that γ passes through P when t = 0

and through Q when t = R (this can always be achieved by a

suitable reparametrization). Show that the length of the part

of γ between P and Q is ≥ R, and that R is the length of the

part of γα between P and Q.

(ii) Show that, if γ is any curve on S joining P and Q (not neces-

sarily staying inside the patch σ), the length of the part of γ

between P and Q is ≥ R.

(iii) Show that, if the part of a curve γ on S joining P to Q has

length R, then γ is a reparametrization of γα.



10
Gauss’ Theorema Egregium

One of Gauss’ most important discoveries about surfaces is that the Gaussian

curvature is unchanged when the surface is bent without stretching. Gauss

called this result ‘egregium’, and the Latin word for ‘remarkable’ has remained

attached to his theorem ever since. We shall deduce the Theorema Egregium

from two results which relate the first and second fundamental forms of a

surface, and which have other important consequences.

10.1 The Gauss and Codazzi–Mainardi

equations

It is natural to ask if there are any relations between the first and second

fundamental forms of a surface. Note that, by Examples 6.1.2, 6.1.4, 7.1.1

and 7.1.2, the plane and the unit cylinder, when suitably parametrized, have

the same first fundamental form but different second fundamental forms, and

so the second fundamental form certainly cannot be ‘deduced’ from the first.

Nevertheless, there are some nontrivial relations between the two forms.

Proposition 10.1.1 (Codazzi–Mainardi Equations)

Let

Edu2 + 2Fdudv +Gdv2 and Ldu2 + 2Mdudv +Ndv2

Andrew Pressley, Elementary Differential Geometry: Second Edition, 247
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-891-9 10,
c© Springer-Verlag London Limited 2010
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be the first and second fundamental forms of a surface patch σ(u, v), and define

the Christoffel symbols as in Proposition 7.4.4. Then,

Lv −Mu = LΓ1
12 +M(Γ2

12 − Γ1
11)−NΓ2

11,

Mv −Nu = LΓ1
22 +M(Γ2

22 − Γ1
12)−NΓ2

12.
(10.1)

Proposition 10.1.2 (Gauss Equations)

If K is the Gaussian curvature of the surface patch σ(u, v) in the preceding

proposition, then

EK =(Γ2
11)v − (Γ2

12)u + Γ1
11Γ

2
12 + Γ2

11Γ
2
22 − Γ1

12Γ
2
11 − (Γ2

12)
2

FK =(Γ1
12)u − (Γ1

11)v + Γ2
12Γ

1
12 − Γ2

11Γ
1
22

FK =(Γ2
12)v − (Γ2

22)u + Γ1
12Γ

2
12 − Γ1

22Γ
2
11

GK =(Γ1
22)u − (Γ1

12)v + Γ1
22Γ

1
11 + Γ2

22Γ
1
12 − (Γ1

12)
2 − Γ2

12Γ
1
22.

Proof

We prove both propositions simultaneously. Write down the equation (σuu)v =

(σuv)u, using Proposition 7.4.4 for σuu and σuv:

(Γ1
11σu + Γ2

11σv + LN)v = (Γ1
12σu + Γ2

12σv +MN)u,

∴

(

)Γ1
11

)*
−

)Γ1
12

)+

)

σu +

(

)Γ2
11

)*
−

)Γ2
12

)+

)

σv + (Lv −Mu)N

= Γ1
12σuu + (Γ2

12 − Γ1
11)σuv − Γ2

11σvv − LNv +MNu (10.2)

= Γ1
12(Γ

1
11σu + Γ2

11σv + LN) + (Γ2
12 − Γ1

11)(Γ
1
12σu + Γ2

12σv +MN)

−Γ2
11(Γ

1
22σu + Γ2

22σv +NN)− LNv +MNu,

using Proposition 7.4.4 again. Now, Nu and Nv are perpendicular to N, and

so are linear combinations of σu and σv. Hence, equating N components on

both sides of the last equation gives

Lv −Mu = LΓ1
12 +M(Γ2

12 − Γ1
11)−NΓ2

11,

which is the first of the Codazzi–Mainardi equations (10.1). The other equation

follows in a similar way by equating coefficients of N in the equation (σuv)v =

(σvv)u.

Now we use the formulas in the proof of Proposition 8.1.2 to express Nu

and Nv in terms of σu and σv. Equating coefficients of σu in Eq. 10.2 then

gives

(Γ1
11)v − (Γ1

12)u = Γ2
12Γ

1
12 − Γ2

11Γ
1
22 + Lc−Ma (10.3)



10.1 The Gauss and Codazzi–Mainardi equations 249

in the notation of the proof of Proposition 8.1.2, from which we find that

a =
LG −MF

EG − F 2
, c =

MG −NF

EG − F 2

and hence

Lc −Ma =
L(MG −NF )−M(LG −MF )

EG − F 2
= −

F (LN −M2)

EG − F 2
= −FK

by Corollary 8.1.3. Substituting in Eq. 10.3 and rearranging gives the second

of the Gauss equations. The other three are proved in the same way, equating

coefficients of σv in (σuu)v = (σuv)u and those of σu and σv in (σuv)v =

(σvv)u.

The following theorem tells us that there are no other relations between the

first and second fundamental forms other than those in Propositions 10.1.1 and

10.1.2.

Theorem 10.1.3

Let σ : U → R3 and σ̃ : U → R3 be surface patches with the same first and

second fundamental forms. Then, there is a direct isometry M of R3 such that

σ̃ = M(σ).

Moreover, let V be an open subset of R3 and let E,F,G,L,M and N be

smooth functions on V . Assume that E > 0, G > 0, EG−F 2 > 0 and that the

equations in Propositions 10.1.1 and 10.1.2 hold, with K = LN−M2

EG−F 2 and the

Christoffel symbols defined as in Proposition 7.4.4. Then, if (u0, v0) ∈ V , there

is an open set U contained in V and containing (u0, v0), and a surface patch

σ : U → R3, such that Edu2 + 2Fdudv +Gdv2 and Ldu2 + 2Mdudv + Ndv2

are the first and second fundamental forms of σ, respectively.

This theorem is an analogue for surfaces of Theorem 2.2.5, which shows

that unit-speed plane curves are determined up to a direct isometry of R3

by their signed curvature. We shall not prove Theorem 10.1.3 here. The first

part depends on uniqueness theorems for the solution of systems of ordinary

differential equations, and is not particularly difficult. The second part is more

sophisticated and depends on existence theorems for the solution of certain

partial differential equations. The following example illustrates what is involved.

Example 10.1.4

Consider the first and second fundamental forms du2 + dv2 and −du2, respec-

tively. Let us first see whether a surface patch with these first and second
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fundamental forms exists. Since all the coefficients of these forms are constant,

all the Christoffel symbols are zero and the Codazzi–Mainardi equations are

obviously satisfied. The first formula in Proposition 10.1.2 gives K = 0, so

the only other condition to be checked is LN −M2 = 0, and this clearly holds

since M = N = 0. Theorem 10.1.3 therefore tells us that a surface patch with

the given first and second fundamental forms exists.

To find it, we note that the Gauss equations give

σuu = −N, σuv = 0, σvv = 0.

The last two equations tell us that σv is a constant vector, say a, so

σ(u, v) = b(u) + av, (10.4)

where b is a function of u only. The first equation then gives N = −b′′ (a dash

denoting d/du). We now need to use the expressions for Nu and Nv in terms

of σu and σv in the proof of Proposition 8.1.2. The matrix of the Weingarten

map with respect to the basis {σu,σv} of the tangent plane is

F−1
I FII =

(

1 0

0 1

)−1 (
−1 0

0 0

)

=

(

−1 0

0 0

)

,

so Proposition 8.1.2 gives

Nu = σu, Nv = 0.

The second equation tells us nothing new, since we already know that N = −b′′

depends only on u. The first equation gives

b
′′′ + b

′ = 0.

Hence, b′′ + b is a constant vector, which we can take to be zero by applying

a translation to σ (see Eq. 10.4). Then,

b(u) = c cosu+dsinu,

where c and d are constant vectors, and N = −b′′ = b. This must be a unit

vector for all values of u. It is easy to see that this is possible only if c and d

are perpendicular unit vectors, in which case we can arrange that c = (1, 0, 0)

and d = (0, 1, 0) by applying an isometry of R3, giving b(u) = (cosu, sinu, 0).

Finally, σu ×σv = λN for some non-zero scalar λ, so b′ × a = λb. This forces

a = (0, 0, λ), and the patch is given by

σ(u, v) = (cosu, sinu, λv),

a parametrization of the unit cylinder (which the reader had probably guessed

some time ago).
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EXERCISES

10.1.1 A surface patch has first and second fundamental forms

cos2 v du2 + dv2 and − cos2 v du2 − dv2,

respectively. Show that the surface is an open subset of a sphere of

radius one. Write down a parametrization of S2 with these first and

second fundamental forms.

10.1.2 Show that there is no surface patch whose first and second funda-

mental forms are

du2 + cos2 u dv2 and cos2 u du2 + dv2,

respectively.

10.1.3 Suppose that a surface patch σ(v, w) has first and second fundamen-

tal forms
dv2 + dw2

w2
and Ldv2 +Ndw2,

respectively, where w > 0. Prove that L and N do not depend on v,

that LN = −1/w4 and that

Lw5 dL

dw
= 1− L2w4.

Solve this equation for L and deduce that σ cannot be defined in

the whole of the half-plane w > 0. Compare the discussion of the

pseudosphere in Example 9.3.3.

10.1.4 Suppose that the first and second fundamental forms of a surface

patch are Edu2 + Gdv2 and Ldu2 + Ndv2, respectively. Show that

the Codazzi–Mainardi equations reduce to

Lv =
1

2
Ev

(

L

E
+

N

G

)

, Nu =
1

2
Gu

(

L

E
+

N

G

)

.

Deduce that the principal curvatures κ1 = L/E and κ2 = N/G

satisfy the equations

(κ1)v =
Ev

2E
(κ2 − κ1), (κ2)u =

Gu

2G
(κ1 − κ2).
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10.2 Gauss’ remarkable theorem

We noted after Proposition 7.4.4 that the Christoffel symbols depend only on

the coefficients of the first fundamental form. It follows from the formulas in

Proposition 10.1.2 that this is also true of the Gaussian curvature K. In view

of Corollary 6.2.3, we obtain:

Theorem 10.2.1 (Gauss’ Theorema Egregium)

The Gaussian curvature of a surface is preserved by local isometries.

This means, more explicitly, that if S1 and S2 are two surfaces and f : S1 →
S2 is a local isometry, then for any point p ∈ S1 the Gaussian curvature of S1

at p is equal to that of S2 at f(p). The theorem is sometimes expressed by

saying that the Gaussian curvature is an intrinsic property of a surface, for it

implies that the Gaussian curvature could be measured by a bug living in the

surface.

By substituting into the equations in Proposition 10.1.2 the expressions for

the Christoffel symbols in Proposition 7.4.4, we can of course find an explicit

expression for K in terms of E,F and G. (It appears that we could get four

such formulas, one from each of the equations in Proposition 10.1.2, but these

turn out to be the same.) Here is the result.

Corollary 10.2.2

The Gaussian curvature is given by

K =

,
,
,
,
,
,

− 1
2Evv + Fuv − 1

2Guu
1
2Eu Fu − 1

2Ev

Fv − 1
2Gu E F

1
2Gv F G

,
,
,
,
,
,
−

,
,
,
,
,
,

0 1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G

,
,
,
,
,
,

(EG− F 2)2
.

We shall not go through the details of this calculation, partly because the

algebra is tedious, and partly because the following special cases are often all

that is needed.

Corollary 10.2.3

(i) If F = 0, we have

K = − 1

2
√
EG

{
∂

∂u

(

Gu√
EG

)

+
∂

∂v

(

Ev√
EG

)}

.
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(ii) If E = 1 and F = 0, we have

K = −
1√
G

∂2
√
G

∂u2
.

Proof

If F = 0 Proposition 7.4.4 gives

Γ1
11 =

Eu

2E
, Γ2

11 = −Ev

2G
, Γ1

12 =
Ev

2E
, Γ2

12 =
Gu

2G
, Γ1

22 = −Gu

2E
, Γ2

22 =
Gv

2G
.

Substituting into the first formula in Proposition 10.1.2 gives

EK = −
(

Ev

2G

)

v

−
(

Gu

2G

)

u

+
EuGu

4EG
− EvGv

4G2
+

E2
v

4EG
− G2

u

4G2

i.e., − 2K
√
EG =

Evv +Guu

(EG)1/2
− Ev(EGv + EvG)

2(EG)3/2
− Gu(EuG+ EGu)

2(EG)3/2

=
Evv

(EG)1/2
− 1

2

Ev(EG)v
(EG)3/2

+
Guu

(EG)1/2
− 1

2

Gu(EG)u
(EG)3/2

=

(

Ev

(EG)1/2

)

v

+

(

Gu

(EG)1/2

)

u

,

proving the equation in (i). If, in addition, E = 1, the second term on the

right-hand side of the formula in (i) vanishes, so

K = − 1

2
√
G

∂

∂u

(

Gu√
G

)

= − 1√
G

∂2
√
G

∂u2
.

Example 10.2.4

For the surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

where f > 0 and ḟ2+ ġ2 = 1 (a dot denoting d/du), we found in Example 6.1.3

that E = 1, F = 0, and G = f(u)2. Hence, Corollary 10.2.3(ii) applies and

gives

K = − 1√
G

∂2
√
G

∂u2
= − f̈

f
,

in agreement with Example 8.1.4.



254 10. Gauss’ Theorema Egregium

The Theorema Egregium provides a necessary condition for the existence of

a local isometry between surfaces: if such a local isometry exists, the Gaussian

curvature must be the same at corresponding points of the two surfaces. We

give two examples of this idea; others can be found in the exercises.

Our first result shows that it is impossible to draw a ‘perfect’ map of the

Earth (which is why cartography is an interesting subject).

Proposition 10.2.5

Any map of any region of the earth’s surface must distort distances.

Proof

A map of a region of the earth’s surface which did not distort distances would be

a diffeomorphism from this region of a sphere to a region in a plane (the map)

which multiplied all distances by the same constant factor, say C . We might as

well assume that the plane passes through the origin. Then, by composing this

map with the map r �→ C−1r from the plane to itself, we would get an isometry

between this region of the sphere and some region of a plane. This would imply,

by the Theorema Egregium, that these regions of the sphere and the plane have

the same Gaussian curvature. But we know that a plane has Gaussian curva-

ture zero everywhere, and a sphere has constant positive Gaussian curvature

everywhere (if the sphere has radius R, the Gaussian curvature is 1/R2). So no

such isometry can exist.

Note, on the other hand, that it is possible to draw a map of the Earth

that correctly represents angles, and a map that correctly represents areas, for

we saw in Example 6.3.5 that the stereographic projection is conformal, and

Archimedes’ Theorem 6.4.6 shows that there is a map that correctly represents

areas. However, it is not possible to represent both angles and areas correctly

with the same map (Exercise 6.4.5(ii)).

Our next example shows how the Theorema Egregium can sometimes be

used to determine all the isometries of a surface.

Proposition 10.2.6

The only isometries of a helicoid (Exercise 4.2.6)

σ(u, v) = (u cos v, u sin v, v)

are Sλ, Rx ◦ Sλ, Ry ◦ Sλ and Rz ◦ Sλ for some value of λ, where Sλ is the

screwing motion σ(u, v) �→ σ(u, v + λ), and Rx, Ry and Rz are rotations by π

around the x-, y- and z-axes.
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Proof

Suppose that an isometry of the helicoid takes σ(u, v) to σ(ũ, ṽ), where ũ and

ṽ are smooth functions of u and v. Since the Gaussian curvature at σ(u, v) is

−1/(1 + u2)2 (see Exercise 8.1.2), the Theorema Egregium tells us that

−1

(1 + u2)2
=

−1

(1 + ũ2)2
,

so ũ = ±u. Applying a rotation Rz by π around the z-axis changes u to −u

(and fixes v), so we assume that ũ = u. Let ṽ = f(u, v). By Corollary 6.2.3, the

patches σ(u, v) and σ̃(u, v) = σ(u, f(u, v)) have the same first fundamental

form. That of σ is du2 + (1 + u2)dv2, and that of σ̃ is found to be

(1 + (1 + u2)f2
u)du

2 + 2(1 + u2)fufvdudv + (1 + u2)f2
vdv

2.

Equating these, we find that fu = 0 and fv = ±1. Hence,

ṽ = f(u, v) = ±v + λ,

where λ is a constant. A rotation Rx by π around the x-axis changes v to −v

(and fixes u), so we take the + sign. This gives the isometry

Sλ : σ(u, v) �→ σ(u, v + λ).

This proves the proposition (the isometry Ry ◦ Sλ arises because Ry =

Rx ◦Rz).

EXERCISES

10.2.1 Show that if a surface patch has first fundamental form eλ(du2+dv2),

where λ is a smooth function of u and v, its Gaussian curvature K

satisfies
∆λ+ 2Keλ = 0,

where ∆ denotes the Laplacian ∂2/∂u2 + ∂2/∂v2.

10.2.2 With the notation of Exercise 9.5.1, define u = r cos θ, v = r sin θ,

and let σ̃(u, v) be the corresponding reparametrization of σ. It can

be shown that σ̃ is an allowable surface patch for S defined on the

open set u2 + v2 < ǫ2. (Note that this is not quite obvious because

σ is not allowable when r = 0.)

(i) Show that the first fundamental form of σ̃ is Ẽdu2+2F̃ dudv+

G̃dv2, where

Ẽ =
u2

r2
+

Gv2

r4
, F̃ =

(

1− G

r2

)

uv

r2
, G̃ =

v2

r2
+

Gu2

r4
.
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(ii) Show that u2(Ẽ−1) = v2(G̃−1), and by considering the Taylor

expansions of Ẽ and G̃ about u = v = 0, deduce that

G(r, θ) = r2 + kr4 + remainder

for some constant k, where remainder/r4 tends to zero as r

tends to zero.

(iii) Show that k = −K(P )/3, where K(P ) is the value of the Gaus-

sian curvature of S at P .

10.2.3 With the notation of Exercises 9.5.1 and 10.2.2, show that:

(i) The circumference of the geodesic circle with centre P and radius

R is

CR = 2πR

(

1−
K(P )

6
R2 + remainder

)

,

where remainder/R2 tends to zero as R tends to zero.

(ii) The area inside the geodesic circle in (i) is

AR = πR2

(

1−
K(P )

12
R2 + remainder

)

,

where the remainder satisfies the same condition as in (i).

Verify that these formulas are consistent with those in spherical ge-

ometry obtained in Exercise 6.5.3.

10.2.4 Let A,B and C be the vertices of a triangle T on a surface S whose

sides are arcs of geodesics, and let α, β and γ be its internal angles (so

that α is the angle at A, etc.). Assume that the triangle is contained

in a geodesic patch σ as in Exercise 9.5.1 with P = A. Thus, with

the notation in that exercise, if we take v to be tangent at A to the

side passing through A and B, then the sides meeting at A are the

parameter curves θ = 0 and θ = α, and the remaining side can be

parametrized by γ(θ) = σ(f(θ), θ) for some smooth function f and

0 ≤ θ ≤ α.

Ã

v

B

C

A
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(i) Use the geodesic equations (9.2) to show that

f ′′ −
f ′λ′

λ2
=

1

2

∂G

∂r
,

where a dash denotes d/dθ and λ = ‖ γ′ ‖.

(ii) Show that, if ψ(θ) is the angle between σr and the tangent

vector to the side opposite A at γ(θ), then

ψ′(θ) = −∂
√
G

∂r
(f(θ), θ).

(iii) Show that, if K is the Gaussian curvature of S,
∫

T

K dAσ = α+ β + γ − π.

This result will be generalized in Corollary 13.2.3.

10.2.5 Show that the Gaussian curvature of the Möbius band in Exam-

ple 4.5.3 is equal to −1/4 everywhere along its median circle. Deduce

that this Möbius band cannot be constructed by taking a strip of pa-

per and joining the ends together with a half-twist. (The analytic

description of the ‘cut and paste’ Möbius band is more complicated

than the version in Example 4.5.3.)

10.2.6 Show that the only isometries from the catenoid to itself are products

of rotations around its axis, reflections in planes containing the axis,

and reflection in the plane containing the waist of the catenoid.

10.3 Surfaces of constant Gaussian curvature

The results of the preceding two sections enable us to gain a good understanding

of surfaces of constant Gaussian curvature. We begin with the following local

description.

Theorem 10.3.1

Any point of a surface of constant Gaussian curvature is contained in a patch

that is isometric to an open subset of a plane, a sphere or a pseudosphere.
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Proof

Let p be a point on a surface S with constant Gaussian curvature K. By

applying a dilation of R3 (see Exercise 8.1.5), we need only consider the cases

K = 0, 1 and −1.

We take a geodesic patch σ(u, v) with σ(0, 0) = p. Writing g =
√
G, the

first fundamental form is

du2 + g(u, v)2dv2.

By Corollary 10.2.3(ii),
∂2g

∂u2
+Kg = 0. (10.5)

Note that

g(0, v) = 1, gu(0, v) = 0, (10.6)

by Proposition 9.5.1.

If K = 0, the solution of Eq. 10.5 is g(u, v) = αu + β, where α and β are

smooth functions of v only. The initial conditions (10.6) give α = 0, β = 1,

so g = 1 and the first fundamental form of σ is du2 + dv2. This is the same

as the first fundamental form of the usual parametrization of the plane (see

Example 6.1.2), and Corollary 6.2.3 now shows that σ is isometric to an open

subset of the plane.

If K = 1, the general solution of Eq. 10.5 is g = α cosu + β sinu, where

α and β only depend on v. The boundary conditions (10.6) give α = 1, β =

0, and the first fundamental form of σ is du2 + cos2 u dv2. This is the first

fundamental form of S2, with u and v being latitude and longitude, respectively

(see Example 6.1.3). Hence, σ is isometric to an open subset of S2.

Finally, if K = −1, we find in the same way that the first fundamental form

of σ is

du2 + cosh2 u dv2.

We have not encountered this first fundamental form before. However, let us

reparametrize σ by defining

V = evtanhu, W = evsechu.

We then find, using the formulas in Exercise 6.1.4, that the first fundamental

form becomes
dV 2 + dW 2

W 2
.

Comparing with Exercise 8.3.1, we see that this is the first fundamental form

of a parametrization of the pseudosphere.

The next result gives a much more precise, though still local, description of

surfaces of constant negative Gaussian curvature.
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Proposition 10.3.2

Let S be a surface of constant Gaussian curvature −1. If p ∈ S, there is a

surface patch of S containing p whose first and second fundamental forms are

du2 + 2 cos θ dudv + dv2 and 2 sin θ dudv, (10.7)

respectively, where θ(u, v) is a smooth function such that 0 < θ < π for all u, v.

Thus, the parameter curves of this parametrization form a Chebyshev net

(see Exercises 6.1.9 and 7.4.6).

Proof

Since K is negative the surface S has no umbilics. Hence, there is a surface

patch σ(U, V ) containing p whose first and second fundamental forms are

EdU2 +GdV 2 and LdU2 +NdV 2,

respectively (Proposition 8.4.1). The principal curvatures are

κ1 =
L

E
, κ2 =

N

G
. (10.8)

Since κ1κ2 = −1, there are two cases:

(i) κ1 > 0 and κ2 < 0 for all U, V

(ii) κ1 < 0 and κ2 > 0 for all U, V

We shall concentrate on case (i), indicating briefly the modifications necessary

for case (ii).

In case (i), there is a smooth function ω(U, V ) such that 0 < ω < π/2 and

κ1 = tanω, κ2 = − cotω. (10.9)

(In case (ii), we put κ1 = − cotω, κ2 = tanω.) The first Codazzi-Mainardi

equation is

LV =
1

2
EV

(

L

E
+

N

G

)

(cf. Exercise 10.1.4). From Eqs. 10.8 and 10.9, we get

(E tanω)V =
1

2
EV (tanω − cotω),

i.e., ωV = − EV

2E
cotω. (10.10)
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Then,
(

cosω√
E

)

V

= −ωV sinω√
E

− EV cosω

2E3/2
= − sinω√

E

(

ωV +
EV

2E
cotω

)

= 0

by Eq. 10.10. Hence, there is a positive smooth function e(U) such that

E = e(U) cos2 ω.

Similarly, the second Codazzi-Mainardi equation implies that there is a positive

smooth function g(V ) such that

G = g(V ) sin2 ω.

(In case (ii), we get E = e(U) sin2 ω, G = g(V ) cos2 ω.)

Let Ũ(U) and Ṽ (V ) be smooth functions such that

dŨ

dU
=

-
e(U),

dṼ

dV
=

-
g(V ),

and let σ̃(Ũ , Ṽ ) be the corresponding reparametrization of σ(U, V ). Then, the

first fundamental form of σ̃ is

cos2 ω dŨ2 + sin2 ω dṼ 2

and its second fundamental form is

L

e
dŨ2 +

N

g
dṼ 2 = sinω cosω(dŨ2 − dṼ 2).

Setting u = (Ũ+Ṽ )/2, v = (Ũ−Ṽ )/2 gives a reparametrization of σ̃ whose first

and second fundamental forms are as stated in the proposition, with θ = 2ω.

(In case (ii) we set u = (Ũ + Ṽ )/2, v = (Ṽ − Ũ)/2.)

The function θ(u, v) appearing in (10.7) is not arbitrary, as the Gauss equa-

tions (Proposition 10.1.2) must still be satisfied. As we remarked earlier, these

four equations are equivalent to each other, so we need only consider one of

them. The Christoffel symbols are found to be

Γ1
11 = θu cot θ, Γ1

12 = 0, Γ1
22 = −θvcosec θ,

Γ2
11 = −θucosec θ, Γ2

12 = 0, Γ2
22 = θv cot θ.

Substituting in the first of the Gauss equations gives

−1 = (−θucosec θ)v − θuθvcosec θ cot θ,

i.e., θuv = sin θ. (10.11)

This is called the sine-Gordon equation; it arises in fluid mechanics and various

other areas of physics.

In view of Theorem 10.1.3, we can summarize our discussion as follows.
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Theorem 10.3.3

Let θ(u, v) be a smooth solution of the sine-Gordon equation (10.11) such that

0 < θ < π. Then there exists a surface, unique up to a direct isometry of R3,

with constant Gaussian curvature −1 and first and second fundamental forms

given by (10.7). Conversely, any surface of constant Gaussian curvature −1 has

a parametrization with first and second fundamental forms (10.7) in which θ

is a solution of the sine-Gordon equation.

We conclude this section with a beautiful global result that character-

izes the compact surfaces of constant Gaussian curvature. Note that, by

Proposition 8.6.1, the value of the constant Gaussian curvature in this case

must be > 0.

Theorem 10.3.4

Every connected compact surface whose Gaussian curvature is constant is a

sphere.

The proof of this theorem depends on the following lemma.

Lemma 10.3.5

Let σ : U → R3 be a surface patch containing a point p that is not an umbilic.

Let κ1 ≥ κ2 be the principal curvatures of σ and suppose that κ1 has a local

maximum at p and κ2 has a local minimum there. Then, the Gaussian curvature

of σ at p is ≤ 0.

Proof 10.3.5 Since p is not an umbilic, κ1 > κ2 at p, so by shrinking U if

necessary, we may assume that κ1 > κ2 everywhere.

By Proposition 8.4.1, we can assume that the first and second fundamental

forms of σ are

Edu2 +Gdv2 and Ldu2 +Ndv2,

respectively. By Exercise 10.1.4,

Ev = − 2E

κ1 − κ2
(κ1)v, Gu =

2G

κ1 − κ2
(κ2)u,

and by Corollary 10.2.3(i), the Gaussian curvature

K = − 1

2
√
EG

(

∂

∂u

(

Gu√
EG

)

+
∂

∂v

(

Ev√
EG

))

.
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Since p is a stationary point of κ1 and κ2, we have (κ1)v = (κ2)u = 0, and

hence Ev = Gu = 0, at p. Hence, at p,

K = −
1

2EG
(Guu + Evv) = −

1

2EG

(

2G

κ1 − κ2
(κ2)uu −

2E

κ1 − κ2
(κ1)vv

)

(again dropping terms involving Ev, Gu and the first derivatives of κ1 and

κ2). Since κ1 has a local maximum at p, (κ1)vv ≤ 0 there, and since κ2 has

a local minimum at p, (κ2)uu ≥ 0 there. Hence, the last equation shows that

K ≤ 0 at p.

Proof 10.3.4 The proof of Theorem 10.3.4 uses a little point set topology. We

consider the continuous function on the surface S given by J = (κ1 − κ2)
2,

where κ1 and κ2 are the principal curvatures. Note that this function is well

defined even though κ1 and κ2 are not, partly because we do not know which

principal curvature is to be called κ1 and which κ2, and partly because the

principal curvatures are only well defined up to sign unless S has a definite

orientation. We shall prove that this function is identically zero on S, so that

every point of S is an umbilic. Since the Gaussian curvature K > 0, it follows

from Proposition 8.2.9 that S is an open subset of a sphere, say S. In fact,

S must be the whole of S. For, since S is compact, it is necessarily a closed

subset of R3, and hence a closed subset of S. But since S is connected, the only

non-empty subset of S that is both open and closed is S itself.

Suppose then, to get a contradiction, that J is not identically zero on S.
Since S is compact, J must attain its maximum value at some point p ∈ S, and
this maximum value is > 0. Choose a patch σ : U → R3 of S containing p, and

let κ1 and κ2 be its principal curvatures. Since κ1κ2 > 0, by reparametrizing

if necessary, we can assume that κ1 and κ2 are both > 0 (see Exercise 8.2.8).

Suppose that κ1 > κ2 at p; since κ1 and κ2 are continuous (in fact, smooth)

functions on U (Exercise 8.2.8 again), by shrinking U if necessary, we can

assume that κ1 > κ2 everywhere on U . Since K is a constant > 0, the function
(

x− K
x

)2
increases with x provided that x > K/x > 0. Since κ1 > K/κ1 =

κ2 > 0, this function is increasing at x = κ1, so κ1 must have a local maximum

at p, and then κ2 = K/κ1 must have a local minimum there. By Lemma 10.3.5,

K ≤ 0 at p. This contradicts the assumption that K > 0.

EXERCISES

10.3.1 Show that a compact surface with Gaussian curvature > 0 every-

where and constant mean curvature is a sphere.
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10.3.2 Show that the solution of the sine-Gordon equation corresponding

to the pseudosphere constructed in Section 8.3 is

θ(u, v) = 2 tan−1(sinh(u − v + c)),

where c is a constant.

10.4 Geodesic mappings

We considered in Chapter 6 local diffeomorphisms between surfaces that pre-

serve lengths, angles or areas. In the same way, it is natural to consider local

diffeomorphisms that preserve geodesics. In fact, to obtain interesting results

we have to consider local diffeomorphisms F : S → S̃ from a surface S to a

surface S̃ such that, if γ is a geodesic on S, then F ◦ γ is a reparametrization

of a geodesic on S̃ (cf. Exercise 10.4.1). We recall from Exercise 9.1.2 that a

curve that is a reparametrization of a geodesic is called a pre-geodesic. Thus,

we are led to

Definition 10.4.1

If S and S̃ are surfaces, a local diffeomorphism F : S → S̃ is said to be geodesic

if f takes every pre-geodesic on S to a pre-geodesic on S̃.

The following result provides some examples of geodesic local diffeomor-

phisms.

Proposition 10.4.2

The following are geodesic local diffeomorphisms:

(i) Every local isometry.

(ii) Every dilation of R3.

(iii) Every composite of geodesic local diffeomorphisms.

Proof

(i) If γ is a pre-geodesic on a surface patch σ of a surface S, then γ(t) =

γ1(ϕ(t)) for some geodesic γ1 and some reparametrization map ϕ (Exercise

9.1.2). If F : S → S̃ is an isometry, then γ̃1 = F ◦γ1 is a geodesic on the surface
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patch σ̃ = f ◦σ of S̃ by Corollary 9.2.7. Hence, F ◦ γ = F ◦ γ1 ◦ ϕ = γ̃1 ◦ ϕ is

a reparametrization of the geodesic γ̃1, and so is a pre-geodesic.

(ii) The dilation (x, y, z) �→ a(x, y, z), where a is a non-zero constant, multi-

plies the first fundamental form by a2 and hence leaves the Christoffel symbols

unchanged (see Proposition 7.4.4). By Proposition 9.2.3, applying the dilation

leaves the equations determining the geodesics unchanged. It follows that the

dilation takes geodesics to geodesics. By the argument in part (i), it also takes

pre-geodesics to pre-geodesics.

(iii) This is obvious.

As the preceding proof made clear, local isometries and dilations take

geodesics to geodesics. The following is an example of a geodesic local diffeomor-

phism that does not take geodesics to geodesics. By the preceding proposition,

it cannot be a composite of local isometries and dilations.

Example 10.4.3

We consider the map F from the lower hemisphere of the unit sphere S2 to the

plane z = −1 given by projection from the centre of the sphere.

F(P)

P

O

P

C

ℓ

Every pre-geodesic C on S2 is a great circle formed by the intersection of S2

with a plane P passing through the origin. Central projection takes the part

of C in the lower hemisphere to the straight line l that is the intersection of P
with the plane z = −1. Hence, F is a geodesic diffeomorphism.

As a particular case, let P be the xz-plane, so that C can be parametrized

by γ(t) = (cos t, 0, sin t); note that γ is unit-speed and so is a geodesic. It is

easy to show that F (γ(t)) = (− cot t, 0,−1): this curve is a parametrization
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of the straight line y = 0, z = −1 (hence it is a pre-geodesic), but it is not a

geodesic as it does not have constant speed (Proposition 9.1.2).

The inverse of the diffeomorphism F in Example 10.4.3 provides a

parametrization of (an open subset of) S2 with the property that geodesics on

S2 correspond to straight lines in the parameter plane. Beltrami proved the

following beautiful theorem which determines exactly which surfaces admit

parametrizations with this property. It motivated him to carry out a detailed

investigation of surfaces of constant Gaussian curvature, which in turn led to

his work on hyperbolic geometry that we describe in Chapter 11.

Theorem 10.4.4

Let S be a connected surface. If there is a geodesic local diffeomorphism from

S to a plane, then S has constant Gaussian curvature. Conversely, if S has

constant Gaussian curvature, then for any point p ∈ S there is a surface patch

σ : U → S of S such that p ∈ σ(U) and σ−1 : σ(U) → U is a geodesic

diffeomorphism.

Proof

If F is a geodesic local diffeomorphism from S to the plane, σ = F−1 is a

parametrization of an open subset of S with the property that σ takes every

straight line in the plane to a pre-geodesic on S. Denoting the parameters by

u, v, we can take the line to have equation

v = λu + µ, (10.12)

where λ and µ are constants. By Exercise 9.1.2, there is a parametrization t �→
(u(t), v(t)) of this line such that γ(t) = σ(u(t), v(t)) is a unit-speed geodesic

on S. By Proposition 9.2.3, we have

ü+ (Γ1
11 + 2λΓ1

12 + λ2Γ1
22)u̇

2 = 0,

λü + (Γ2
11 + 2λΓ2

12 + λ2Γ2
22)u̇

2 = 0.

Eliminating ü and noting that u̇ cannot be zero (for then we would have v̇ = 0

too, since v̇ = λu̇ by Eq. 10.12, contradicting the fact that γ is unit-speed), we

get
λ(Γ1

11 + 2λΓ1
12 + λ2Γ1

22) = Γ2
11 + 2λΓ2

12 + λ2Γ2
22.

Since every straight line in the uv-plane corresponds to a geodesic γ in this

way, the preceding equation must hold for all values of the constant λ. This

implies that
Γ2
11 = Γ1

22 = 0, Γ1
11 = 2Γ2

12, Γ2
22 = 2Γ1

12.
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The Gauss equations (Proposition 10.1.2) now become

KE = (Γ2
12)

2 − (Γ2
12)u,

KF = (Γ1
12)u − 2(Γ2

12)v + Γ2
12Γ

1
12,

KF = (Γ2
12)v − 2(Γ1

12)u + Γ1
12Γ

2
12,

KG = (Γ1
12)

2 − (Γ1
12)v.

Subtracting the middle two equations gives (Γ1
12)u = (Γ2

12)v, and using this the

four equations become

KE = (Γ2
12)

2 − (Γ2
12)u, (10.13)

KF = −(Γ2
12)v + Γ1

12Γ
2
12, (10.14)

KF = −(Γ1
12)u + Γ1

12Γ
2
12, (10.15)

KG = (Γ1
12)

2 − (Γ1
12)v. (10.16)

Differentiating Eq. 10.13 with respect to v and Eq. 10.14 with respect to u,

and then equating the expressions for (Γ2
12)uv = (Γ2

12)vu gives

EKv − FKu = K(Fu − Ev) + 2Γ2
12(Γ

2
12)v − Γ2

12(Γ
1
12)u − Γ1

12(Γ
2
12)u

= K(Fu − Ev) + 2Γ2
12(Γ

1
12Γ

2
12 −KF )− Γ2

12(Γ
1
12Γ

2
12 −KF )

− Γ1
12((Γ

2
12)

2 −KE)

= K(Fu − Ev) +K(EΓ1
12 − FΓ2

12), (10.17)

where we used Eqs. 10.13–10.15 in passing from the first line to the second.

Using the definition of the Christoffel symbols (Proposition 7.4.4), we find

that

EΓ1
12 − FΓ2

12 =
(EG + F 2)Ev − 2EFGu

2(EG− F 2)
. (10.18)

Now, the equations Γ2
11 = 0 and Γ1

11 = 2Γ2
12 give

EEv = 2EFu − FEu, 3FEv = 2EGu + 2FFu −GEu.

Hence,

(EG+ F 2)Ev − 2EFGu =2(EG− F 2)Ev + (3F 2 − EG)Ev − 2EFGu

=2(EG− F 2)Ev + F (2EGu + 2FFu −GEu)

−G(2EFu − FEu)− 2EFGu

=2(EG− F 2)(Ev − Fu).

Inserting this result into Eq. 10.18 gives

EΓ1
12 − FΓ2

12 = Ev − Fu,
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and then Eq. 10.17 gives

EKv − FKu = 0.

A similar calculation starting with Eqs. 10.15 and 10.16 leads to

FKv −GKu = 0.

Hence,

(EG− F 2)Kv = GFKu − FGKu = 0,

so Kv = 0 (since EG− F 2 > 0). Similarly Ku = 0. Hence, K is constant.

For the converse, assume that S has constant Gaussian curvature. By

Theorem 10.3.1, each point of S is contained in a surface patch that is isometric

to an open subset of a plane, a sphere or a pseudosphere. Since local isometries

and dilations are geodesic local diffeomorphisms (Proposition 10.4.2), we have

only to show that there are geodesic local diffeomorphisms from S to the plane

in three cases:

(i) S is a plane, when there is nothing to prove.

(ii) S is the unit sphere, which is Example 10.4.3.

(iii) S is the pseudosphere in Section 8.3, which is Exercise 9.3.4.

The proof of Beltrami’s theorem is complete.

EXERCISES

10.4.1 Show that a local diffeomorphism between surfaces that takes unit-

speed geodesics to unit-speed geodesics must be a local isometry.

10.4.2 Show that a local diffeomorphism between surfaces that is the com-

posite of a dilation and a local isometry takes geodesics to geodesics.

Is the converse of this statement true?

10.4.3 This exercise shows that a geodesic local diffeomorphism F from a

surface S to a surface S̃ that is also conformal is the composite of a

dilation and a local isometry.

(i) Let p ∈ S and let σ be a geodesic patch containing p as in

Proposition 9.5.1, with first fundamental form du2+Gdv2. Show

that σ̃ = F ◦σ is a patch of σ̃ containing F (p) with first funda-

mental form λ(du2 +Gdv2) for some smooth function λ(u, v).

(ii) Show that the parameter curves v = constant are pre-geodesics

on σ̃ and deduce that λ is independent of v.
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(iii) Show that if γ is a geodesic on σ and θ is the oriented angle

between γ and the parameter curves v = constant,

dθ

dv
+

Gu

2
√
G

= 0. (10.19)

(iv) Show that
dθ

dv
+

(λG)u

2λ
√
G

= 0. (10.20)

(v) Deduce from Eqs. 10.19 and 10.20 that λ is constant.

(vi) Show that F : σ → σ̃ is the composite of a dilation and a local

isometry.



11
Hyperbolic geometry

One of the most remarkable discoveries of nineteenth century mathematics is

that the pseudosphere discussed in Section 8.3 has a geometry that closely

resembles Euclidean geometry, with geodesics playing the role of straight lines.

In fact, the closest correspondence with Euclidean geometry is obtained by

‘embedding’ the pseudosphere in a larger geometry, which is called hyperbolic

or non-Euclidean geometry. When this is done, we find that all the axioms of

Euclidean geometry hold in hyperbolic geometry, except the so-called ‘parallel

axiom’: this states that if p is a point that is not on a straight line l, there is a

unique straight line passing through p that does not intersect l (i.e., which is

‘parallel’ to l in the usual sense).

Hyperbolic geometry was discovered independently and almost simultane-

ously by the Hungarian mathematician Janos Bolyai and the Russian Nicolai

Lobachevsky, although the formulations of it that we shall describe in this

chapter are due to Eugenio Beltrami, Felix Klein and Henri Poincaré. David

Hilbert, one of the greatest mathematicians of the twentieth century, wrote that

the discovery of non-Euclidean geometry was ‘one of the two most suggestive

and notable achievements of the last century’. It ended centuries of attempts

by Greek, Arab and later Western mathematicians to deduce the parallel axiom

from the other axioms of Euclidean geometry, and it profoundly changed our

view of what geometry is.

Andrew Pressley, Elementary Differential Geometry: Second Edition, 269
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-891-9 11,
c© Springer-Verlag London Limited 2010
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11.1 Upper half-plane model

We saw in Example 9.3.3 that if the pseudosphere is parametrized as

σ̃(v, w) =

(

1

w
cos v,

1

w
sin v,

√

1− 1

w2
− cosh−1 w

)

,

where we must have w > 1 for σ̃ to be well defined and smooth, its geodesics

correspond to arcs of circles and straight lines in the vw-plane that intersect

the v-axis perpendicularly. The line w = 1 appears to be a rather artificial

boundary in the vw-plane, since the geodesics are well defined in the entire

region w > 0. On the other hand, the line w = 0 is a ‘real’ boundary since the

first fundamental form
dv2 + dw2

w2
(11.1)

of the pseudosphere is undefined when w = 0. It is therefore natural to ask

if there is a surface that corresponds to the whole of the half-plane w > 0

with this first fundamental form. In fact, there is no such surface for a cele-

brated theorem of Hilbert shows that there is no surface with constant negative

Gaussian curvature that is ‘geodesically complete’, i.e., a surface for which all

geodesics can be extended indefinitely in both directions (see Exercise 10.1.3).

One possible response to Hilbert’s theorem is essentially to ignore it: all

those properties of surfaces that depend only on the first fundamental form

(lengths, angles, areas, geodesics, local isometries, ...) can still be studied for

the half-plane

H = {(v, w) ∈ R
2 |w > 0}

equipped with the first fundamental form (11.1). They will then be called hyper-

bolic lengths, hyperbolic angles, etc. (We shall see the reason for the adjective

‘hyperbolic’ later.)

It will often be convenient to identify R2 with the set of complex numbers

C via (v, w) ↔ v + iw, so that

H = {z ∈ C | Im(z) > 0}

is the set of complex numbers with positive imaginary part.

The first thing to observe is that H is a ‘conformal model’:

Proposition 11.1.1

Hyperbolic angles in H are the same as Euclidean angles.
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Proof

This is just because the first fundamental form (11.1) of H is a multiple of

dv2 + dw2 (see Corollary 6.3.4).

The ‘hyperbolic lines’ are the geodesics in H , which were determined in

Example 9.3.3.

Proposition 11.1.2

The geodesics in H are the half-lines parallel to the imaginary axis and the

semicircles with centres on the real axis.

Here are some simple properties of hyperbolic lines.

Proposition 11.1.3

(i) There is a unique hyperbolic line passing through any two distinct points

of H .

(ii) The parallel axiom does not hold in H .

In the following proof, and later in this chapter, ‘lines’ and ‘circles’ will mean

Euclidean lines and circles (‘hyperbolic line’ means ‘geodesic’). On the other

hand, ‘lengths’ and ‘angles’ will always mean hyperbolic lengths and angles,

unless explicitly stated otherwise.

Proof

(i) Let a, b ∈ H , a �= b. If the line passing through a and b is parallel to the

imaginary axis, the unique hyperbolic line passing through the points a and b

is the half-line containing them. If the line through a and b is not parallel to the

imaginary axis, its perpendicular bisector intersects the real axis at some point

c, say, and the unique hyperbolic line passing through a and b is the semicircle

with centre c and radius |a− c| = |b− c|.
(ii) Take l to be the imaginary axis and let a ∈ H be any point not on l. For

definiteness, assume that the real part Re(a) > 0. Then, the perpendicular

bisector of the line joining a to the origin intersects the real axis at some point

b > 0. Let c be a real number greater than b; then the semicircle with centre c

passing through a is a hyperbolic line in H that does not intersect l. Of course,
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the half-line through a parallel to the imaginary axis is another hyperbolic line

with the same property (it can be regarded as the limiting case when c → ∞).

Since there is a unique hyperbolic line passing through any two points a, b ∈
H, it makes sense to define the hyperbolic distance dH (a, b) between a and b

to be the length of the hyperbolic line segment joining them. It is shown in

Exercise 11.2.1 that this is actually the hyperbolic length of the shortest curve

joining a and b.

Proposition 11.1.4

The hyperbolic distance between two points a, b ∈ H is

dH (a, b) = 2 tanh−1 |b− a|
|b− ā| .

In this formula, ā denotes the complex conjugate of the complex number

a. The appearance of the hyperbolic tangent gives an indication of the reason

why the geometry of H is called ‘hyperbolic geometry’.

Proof

There are two cases, depending on whether the hyperbolic line joining a and b

is a semicircle or a half-line. We shall deal with the semicircle case, leaving the

simpler case of the half-line to Exercise 11.1.2.

Suppose then that a and b lie on the semicircle with centre c on the real

axis and radius r. The semicircle can be parametrized by

v = c+ r cos θ, w = r sin θ.

Writing d for dH(a, b) and denoting d/dθ by a dot, we have

d =

∫ ψ

ϕ

√

v̇2 + ẇ2

w2
dθ =

∫ ψ

ϕ

√

r2 sin2 θ + r2 cos2 θ

r2 sin2 θ
dθ =

∫ ψ

ϕ

dθ

sin θ
,

where ϕ = arg(a− c), ψ = arg(b− c) (note that d is independent of the radius

of the semicircle). Hence,

d = ln
tan ψ

2

tan ϕ
2

.
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a

b

c

Á
Ã

Now,

tanh
d

2
=

ed − 1

ed + 1
=

tan ψ
2 − tan ϕ

2

tan ψ
2 + tan ϕ

2

=
sin ψ

2 cos ϕ
2 − cos ψ

2 sin ϕ
2

sin ψ
2 cos ϕ

2 + cos ψ
2 sinϕ2

=
sin ψ−ϕ

2

sin ψ+ϕ
2

.

(11.2)

On the other hand,

|b− a|2 = r2((cosψ − cosϕ)2 + (sinψ − sinϕ)2)

= 2r2(1− cos(ψ − ϕ)) = 4r2 sin2
ψ − ϕ

2
,

and similarly

|b− ā|2 = 4r2 sin2
ψ + ϕ

2
.

Combining the last two equations with Eq. 11.2 gives

tanh
d

2
=

|b − a|

|b − ā|
.

We conclude this section with another beautiful formula, this time for the

area of a hyperbolic polygon, i.e., a polygon whose sides are hyperbolic lines.

Theorem 11.1.5

Let P be a n-sided hyperbolic polygon in H with internal angles α1, α2, . . . , αn.

Then, the hyperbolic area of the polygon is given by

A (P ) = (n− 2)π − α1 − α2 − · · · − αn.
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a1 a2
a3

®1
®2
®3

P

In particular, for a triangle with angles α, β, γ, the area is

π − α− β − γ.

This should be compared with the well-known formula

α+ β + γ = π

for the sum of the angles of a Euclidean triangle with straight line sides, and

the formula

α+ β + γ − π

for the area of a triangle on the unit sphere with geodesic (i.e., great circle)

sides (Theorem 6.4.7).

Proof 11.1.5 Let a1, . . . , an be the vertices of P and C its boundary, consisting

of n hyperbolic line segments a1a2, a2a3, . . . , ana1 (we assume that α1 is the

internal angle of P at the vertex a1, etc.). Since the first fundamental form is

(dv2 + dw2)/w2, the area of P is
∫

P

dvdw

w2
.

We evaluate this integral by using Green’s theorem (Section 3.2):

∫

C

pdv + qdw =

∫

P

(

∂q

∂v
− ∂p

∂w

)

dvdw,
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where p and q are smooth functions of (v, w). Taking p = 1/w and q = 0 gives
∫

P

dvdw

w2
=

∫

C

dv

w
. (11.3)

To evaluate this integral we first prove the following lemma.

Lemma 11.1.6

Let a and b be the endpoints of a segment l of a hyperbolic line in H that forms

part of a semicircle with centre p on the real axis, and suppose that the radius

vectors joining p to a and p to b make angles ϕ and ψ, respectively, with the

positive real axis (see the diagram in the proof of Proposition 11.1.4). Then,
∫

l

dv

w
= ϕ− ψ.

Note that the integral is independent of the radius of the semicircle, and

that the formula is correct even if the hyperbolic line is part of a half-line, for

in that case the integral vanishes since v is constant along the hyperbolic line.

Proof 11.1.6 We parametrize the hyperbolic line by v = r cos θ, w = r sin θ,

where r is the radius of the semicircle. Then, the integral is

∫ ψ

ϕ

−r sin θ dθ

r sin θ
= −

∫ ψ

ϕ

dθ = ϕ− ψ.

ai

ai+1

®i

®i+1
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Returning to the proof of Theorem 11.1.5, let ϕi and ψi be the angles

defined in the lemma corresponding to the side with endpoints ai and ai+1, for

i = 1, . . . , n (it is understood that an+1 means a1). By Eq. 11.3 and the lemma,

∫

P

dvdw

w2
=

n
∑

i=1

(ϕi − ψi). (11.4)

We can simplify this sum by considering the change in direction of the

outward-pointing normal of P as we traverse its boundary in an anticlockwise

direction. As we traverse the side with endpoints ai and ai+1, the outward

normal rotates anticlockwise through an angle ψi − ϕi, while at the vertex ai
it rotates by π − αi. Hence, as we traverse the boundary of P , the outward

normal rotates through an angle

nπ +

n
∑

i=1

(ψi − ϕi − αi).

But this angle of rotation is 2π (cf. Theorem 3.1.4), so we have the equation

2π = nπ +
n
∑

i=1

(ψi − ϕi − αi).

Rearranging, we get

n
∑

i=1

(ϕi − ψi) = (n− 2)π −
n
∑

i=1

αi.

By Eq. 11.4, this is the desired area.

Note that the area of a hyperbolic triangle, i.e., a triangle whose sides are

hyperbolic lines, depends only on its angles. We found in Proposition 6.5.8

that the same result holds in spherical geometry, but as we noted there this

is completely different to the Euclidean situation, where we can change the

size of a triangle (and hence its area) without changing its angles. In fact, we

shall show in the next section that, as in spherical geometry (Exercise 6.5.2),

two hyperbolic triangles with the same angles are congruent. But first we must

discuss what congruence means in hyperbolic geometry.

EXERCISES

11.1.1 Show that, if l is a half-line geodesic in H and a is a point not on l,

there are infinitely many hyperbolic lines passing through a that do

not intersect l.
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11.1.2 Complete the proof of Proposition 11.1.4 by dealing with the case

in which the hyperbolic line passing through a and b is a half-line.

11.1.3 Show that for any a ∈ H there is a unique hyperbolic line passing

through a that intersects the hyperbolic line l given by v = 0 per-

pendicularly. If b is the point of intersection, one calls dH (a, b) the

hyperbolic distance of a from l.

11.1.4 The hyperbolic circle Ca,R with centre a ∈ H and radius R > 0 is the

set of points of H which are a hyperbolic distance R from a:

Ca,R = {z ∈ H | dH (z, a) = R}.

Show that Ca,R is a Euclidean circle.

Show that the Euclidean centre of Cic,R, where c > 0, is ib and that

its Euclidean radius is r, where

c =
√

b2 − r2, R =
1

2
ln

b+ r

b− r
.

Deduce that the hyperbolic length of the circumference of Cic,R is

2π sinhR and that the hyperbolic area inside it is 2π(coshR − 1).

Note that these do not depend on c; in fact, it follows from the results

of the next section that the circumference and area of Ca,R depend

only on R and not on a (see the remarks preceding Theorem 11.2.4).

Compare these formulas with the case of a spherical circle in Exercise

6.5.3, and verify that they are consistent with Exercise 10.2.3.

11.2 Isometries of H

In Euclidean plane geometry, two triangles are said to be congruent if one

triangle can be moved until it coincides with the other. The types of motion

that are allowed are combinations of rotations, translations, and reflections, i.e.,

the isometries of the plane (see Appendix 1). Similarly, to discuss congruence in

spherical geometry, it was necessary in Section 6.5 to determine the isometries

of the sphere.

It is easy to identify some isometries of H:

(i) Translations parallel to the real axis, given by

Ta(z) = z + a, a ∈ R.
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(ii) Reflections in lines parallel to the imaginary axis, given by

Ra(z) = 2a− z̄, a ∈ R.

Ra(z) is the ‘reflection’ of z in the line Re(z) = a, thought of as a mirror;

each point of this line is fixed by Ra.

(iii) Dilations by a factor a > 0, given by

Da(z) = az.

In terms of the parameters (v, w), these maps are given by (v, w) �→
(v + a, w), (v, w) �→ (2a − v, w) and (v, w) �→ (av, aw), respectively, each

of which obviously takes H to H and preserves the first fundamental form

(11.1). But there is also a fourth type of isometry that is not quite as obvious:

(iv) Inversions in circles with centres on the real axis. The inversion in the

circle with centre a ∈ R and radius r > 0 is

Ia,r(z) = a+
r2

z̄ − a

(see Appendix 2).

To see that Ia,r is an isometry of H, we consider first the case a = 0, r = 1,

and denote I0,1 by I. Then,

I(v + iw) =
v + iw

v2 + w2
,

which makes it clear that I takes any point in H to another point of H and

any point on the real axis to another point on the real axis. To see that I is

indeed an isometry of H, we use the result of Exercise 6.1.4: if ṽ = v
v2+w2 and

w̃ = w
v2+w2 , then

dṽ =
(w2 − v2)dv − 2vwdw

(v2 + w2)2
, dw̃ =

−2vwdv + (v2 − w2)dw

(v2 + w2)2
,

and hence

dṽ2 + dw̃2

w̃2
=

1

w2(v2 + w2)2

{

(

(w2 − v2)dv − 2vwdw
)2

+
(

−2vwdv+(v2 − w2)dw
)2
}

=
(w2 − v2)2 + 4v2w2

w2(v2 + w2)2
(dv2 + dw2) =

dv2 + dw2

w2
.
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Returning to the general case, we note that

I a,r(z) = Ta

(

r2

z̄ − a

)

= TaDr2

(

1

z̄ − a

)

= TaDr2I (z − a) = TaDr2IT−a(z),

so Ia,r is a composite Ta ◦ Dr2 ◦ I ◦ T−a of maps that are already known to

be isometries of H. Since any composite of isometries is an isometry, it follows

that Ia,r is an isometry of H.

We summarize our observations as follows:

Proposition 11.2.1

Any composite of a finite number of maps of the types (i)–(iv) defined above

is an isometry of H.

We shall call an isometry of one of the types (i)–(iv) an elementary isometry

ofH. In fact, every isometry ofH is a composite of a finite number of elementary

isometries, but since we shall not make use of this result we leave its proof to

the exercises.

Since isometries take geodesics to geodesics (Corollary 9.2.7), we know that

the elementary isometries take half-lines and semicircles perpendicular to the

real axis to other half-lines and semicircles perpendicular to the real axis. In

fact, it is clear that translations, dilations and reflections take half-lines to half-

lines and semicircles to semicircles, but the situation for inversions is a little

more complicated:

Proposition 11.2.2

The inversion Ia,r in the circle with centre a ∈ R and radius r > 0 takes

hyperbolic lines that intersect the real axis perpendicularly at a to half-lines,

and all other hyperbolic lines to semicircles.

See Appendix 2 for the proof. The result is intuitively clear, since if a point

of H “tends to” a point a its image under Ia,r “tends to infinity” (both limits

in the Euclidean sense) and so cannot lie on a semicircle geodesic.

Isometries can be used to simplify the solution of many problems in hyper-

bolic geometry, by reducing the problem to a ‘standard’ situation. The basic

result needed for this is
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Proposition 11.2.3

Let l1 and l2 be hyperbolic lines in H, and let z1 and z2 be points on l1 and l2,

respectively. Then, there is an isometry of H that takes l1 to l2 and z1 to z2.

Proof

We observe first that it is enough to prove this result in the special case in

which l2 is the half-line l passing through the origin and z2 = i. For if the

proposition has been proved in this case, there is an isometry F1 that takes

l1 to l and z1 to i, and an isometry F2 that takes l2 to l and z2 to i. Then,

F−1
2 ◦ F1 is an isometry that takes l1 to l2 and z1 to z2.

There are now two cases depending on whether l1 is a half-line or a semi-

circle. If l1 is the half-line v = a, say, the translation T−a takes l1 to l and z1 to

some point ib, say, on l, where b > 0. Then, the dilation Db−1 takes l to itself

and ib to i, and so the isometry we want is Db−1 ◦ T−a.

Finally, suppose that l1 is a semicircle, and let a be one of the two points in

which it intersects the real axis. By Proposition 11.2.2, the inversion Ia,1 takes

l to a half-line geodesic l′, say, and z1 to some point z′ on l′. By the preceding

case, there is an isometry F that takes l′ to l and z′ to i, so the isometry we

want is F ◦ Ia,1.

As a simple application, we can now complete Exercise 11.1.4. If a, b ∈ H,

there is an isometry F of H that takes a to b. Then, F will clearly take the

hyperbolic circle Ca,R to Cb,R for all R > 0. It follows that these hyperbolic

circles have the same circumference and area.

Here is a more important application.

Theorem 11.2.4

In hyperbolic geometry, similar triangles are congruent.

Proof

We have to prove that if we have two triangles T and T ′ with vertices a, b, c and

a′, b′, c′, and if the angle α of T at a is equal to that of T ′ at a′, and similarly

for the angles β at b and b′ and for the angles γ at c and c′, then there is an

isometry F of H such that F (a) = a′, F (b) = b′ and F (c) = c′.

Let l,m, n and l′,m′, n′ be the sides of T and T ′ (so that l is the side opposite

the vertex a, etc.). It is enough to prove the theorem in the special case in which

a = a′ = i and m = m′ is the imaginary axis. For by Proposition 11.2.3, there
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is an isometry G that takes a to i and m to the imaginary axis, and an isometry

G′ that takes a′ to i and m′ to the imaginary axis. If F is the desired isometry

in the special case, then (G′)−1 ◦ F ◦ G is the desired isometry in the general

case.

Assume then that a = a′ = i and m = m′ is the imaginary axis. By applying

the reflection in the imaginary axis if necessary, we can further assume that b

and b′ are on the same side of the imaginary axis. Then either the hyperbolic

lines n and n′ coincide, or one is obtained from the other by applying the

inversion I0,1 (which fixes m and the vertex i). Hence, we can assume that

n = n′.

If now b = b′ and c = c′ the theorem is proved. If not, then we must be in

one of the three situations shown below. By making use of Theorem 11.1.5, we

shall prove that each of these situations is impossible.

a a a

b

b

bb�
b�

c�

c�

c�

c

c

c
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°
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°

°

°

¯

¯

¯
¯

¯

In the first case, the angle sum of the quadrilateral with vertices b, c, c′, b′ is

(π − β) + (π − γ) + γ + β = 2π,

whereas by Theorem 11.1.5 the angle sum must be < 2π.

In the second case, the angle sum of the triangle with vertices d, b′, b is

δ + (π − β) + β,

where δ is the angle between l and l ′ at their intersection point d. This is > π,

again contradicting Theorem 11.1.5.

Finally, in the third case the triangle with vertices b, c, c′ has angle sum

δ + (π − γ) + γ > π,

where δ is as in the preceding case (if c and c′ are interchanged the argument

is the same).
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It follows from this theorem that there must be a formula for the lengths

of the sides of a triangle in H in terms of its angles. Although we could prove

such a formula now, it is slightly easier to establish it in a different model of

hyperbolic geometry, and this is what we consider next.

EXERCISES

11.2.1 Show that if a, b ∈ H, the hyperbolic distance dH(a, b) is the length

of the shortest curve in H joining a and b.

11.2.2 Show that, if l is any hyperbolic line in H and a is a point not on l,

there are infinitely many hyperbolic lines passing through a that do

not intersect l.

11.2.3 Let a be a point of H that is not on a hyperbolic line l. Show that

there is a unique hyperbolic line m passing through a that intersects

l perpendicularly. If b is the point of intersection of l and m, and c

is any other point of l, prove that

dH(a, b) < dH(a, c).

Thus, b is the unique point of l that is closest to a.

11.2.4 This exercise and the next determine all the isometries of H.

(i) Let F be an isometry ofH that fixes each point of the imaginary

axis l and each point of the semicircle geodesic m at the centre

of the origin and radius 1. Show that F is the identity map.

(ii) Let F be an isometry of H such that F (l)= l and F (m)=m,

where l and m are as in (i). Prove that F is the identity map,

the reflection R0, the inversion I0,1 or the composite I0,1 ◦ R0

(in the notation at the beginning of this section).

(iii) Show that every isometry of H is a composite of elementary

isometries.

(iv) Show that every isometry of H is a composite of reflections and

inversions in lines and circles perpendicular to the real axis.

11.2.5 A Möbius transformation (see Appendix 2) is said to be real if it is

of the form

M(z) =
az + b

cz + d
,
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where a, b, c, d ∈ R. Show that:

(i) Any composite of real Möbius transformations is a real Möbius

transformation, and the inverse of any real Möbius transforma-

tion is a real Möbius transformation.

(ii) The Möbius transformations that take H to itself are exactly

the real Möbius transformations such that ad− bc > 0.

(iii) Every real Möbius transformation is a composite of elementary

isometries of H, and hence is an isometry of H.

(iv) If J(z) = −z̄ and M is a real Möbius transformation, M ◦ J is

an isometry of H.

(v) If we call an isometry of type (iii) or (iv) a Möbius isometry,

any composite of Möbius isometries is a Möbius isometry;

(vi) Every isometry of H is a Möbius isometry.

11.3 Poincaré disc model

We now consider a model of hyperbolic geometry based on the unit disc in the

complex plane. Poincaré used this model to bring hyperbolic geometry into the

mainstream of mathematics by establishing its connections with other areas,

notably complex analysis and number theory.

We consider the transformation

P(z) =
z − i

z + i
.

It defines a bijection between the complex plane with the point −i removed

and the complex plane with the point 1 removed, its inverse being

P−1(z) =
z + 1

i(z − 1)
.

In particular, P is well defined at all points of H and its boundary the real

axis.

Let us determine the image of H under P . We have,

P(v + iw) =
v + i(w − 1)

v + i(w + 1)
,
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so

|P(v + iw)| =
(

v2 + w2 + 1− 2w

v2 + w2 + 1 + 2w

)1/2

.

Hence, |P(v + iw)| is < 1 if w > 0, is = 1 if w = 0 and is > 1 if w < 0. Thus,

P takes H to the unit disc

D = {z ∈ C | |z| < 1},

and the real axis to the boundary of D, i.e., the unit circle C given by |z| = 1.

Definition 11.3.1

The Poincaré disc model DP of hyperbolic geometry is the disc D equipped

with the first fundamental form for which P : H → DP is an isometry.

Proposition 11.3.2

The first fundamental form of DP is

4(dv2 + dw2)

(1 − v2 − w2)2
.

In particular, DP is a conformal model of hyperbolic geometry.

Proof

If ṽ + iw̃ = P−1(v + iw), we find that

ṽ =
−2w

(v − 1)2 + w2
, w̃ =

1− v2 − w2

(v − 1)2 + w2
,

which gives

dṽ =
4(v − 1)wdv − 2((v − 1)2 − w2)dw

((v − 1)2 + w2)2
,

dw̃ =
2((v − 1)2 − w2)dv + 4(v − 1)wdw

((v − 1)2 + w2)2
.

Hence,

dṽ2 + dw̃2 =
16(v − 1)2w2 + 4((v − 1)2 − w2)2

((v − 1)2 + w2)4
(dv2 + dw2) =

4(dv2 + dw2)

((v − 1)2 + w2)2
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and so
dṽ2 + dw̃2

w̃2
=

4(dv2 + dw2)

(1− v2 − w2)2
.

Since the first fundamental form of DP is a multiple of du2 + dv2, DP is a

conformal model.

Since P : H → DP is an isometry, it follows that the isometries of DP are

exactly the maps

P ◦ F ◦ P−1,

where F is any isometry of H. Indeed, since any composite of isometries is an

isometry, P ◦F ◦P−1 is an isometry of DP if F is an isometry of H; conversely,

if G is any isometry of DP , then F = P−1 ◦ G ◦ P is an isometry of H, and

G = P ◦ F ◦ P−1.

Here is a simple application of this observation:

Proposition 11.3.3

(i) Let Γ be a circle that intersects C perpendicularly. Then, inversion in Γ is

an isometry of DP .

(ii) Let l be a line passing through the origin (and so perpendicular to C).
Then, (Euclidean) reflection in l is an isometry of DP .

Proof

For (i), let Γ have centre a ∈ C and radius r > 0; then, the inversion in Γ is

given by

Ia,r = a+
r2

z̄ − ā
.

By PropositionA.2.8, Ia,r takes DP to itself. We have to show that P−1◦Ia,r◦P
is an isometry of H. We find that

Ia,r(P(z)) =
(a− |a|2 + r2)z̄ + i(a+ |a|2 − r2)

(1− ā)z̄ + i(1 + ā)
.

Now, since Γ intersects C at right angles, |a|2 = r2 + 1, so

Ia,r(P(z)) =
(a− 1)z̄ + i(a+ 1)

(1− ā)z̄ + i(1 + ā)
.
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This leads to

P−1(Ia,r(P(z))) =
i(a− ā)z̄ − (2 + a+ ā)

(2− a− ā)z̄ − i(a− ā)
.

This is a real Möbius transformation (Exercise 11.2.5) and so is an isometry

of H.

For (ii), let l make an angle θ with the real axis, so that reflection in l is

the map R(z) = e2iθz̄. We find that

P−1(R(P(z))) =
z cos θ + sin θ

−z sin θ + cos θ
,

which is again a real Möbius transformation.

Note that simple isometries in one model may not correspond to simple

isometries in the other. For example, it is clear from Proposition 11.3.2 that

any rotation about the origin is an isometry of DP (because such a rotation

is an isometry of the Euclidean plane, and hence preserves dv2 + dw2 and

v2 + w2), but the corresponding isometry of H is quite complicated (it is not

an elementary isometry, for example).

Since P is an isometry, the geodesics (i.e., the hyperbolic lines) in DP are the

images under P of the geodesics in H. Hence, the properties of the hyperbolic

lines in H can be transferred to DP . For example, if a and b are two distinct

points of DP , then by Proposition 11.1.3, there is a unique hyperbolic line l in

H passing through the distinct points P−1(a) and P−1(b), so P(l) is the unique

hyperbolic line in DP passing through a and b. Similarly, Proposition 11.2.3

holds as stated with H replaced by DP .

The distance between two points of DP is given by

dDP
(a, b) = dH(P−1(a),P−1(b)), a, b ∈ DP .

Using the formula in Proposition 11.1.4, it is straightforward (see Exercise

11.3.1) to prove

Proposition 11.3.4

For a, b ∈ DP , we have

dDP
(a, b) = 2 tanh−1 |b− a|

|1− āb| .
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The explicit form of the hyperbolic lines in D P can, of course, be determined

from the first fundamental form in Proposition 11.3.2. But it is easier to make

use of some simple properties of the map P .

Proposition 11.3.5

The hyperbolic lines in DP are the lines and circles that intersect C perpendic-

ularly (see the diagram below).

Proof

This follows from Proposition 11.1.2 and the fact that P takes the boundary

of H to that of DP and, being a Möbius transformation, preserves (Euclidean)

angles and takes lines and circles to lines and circles (see Appendix 2).

Note that Proposition 11.3.3 tells us that ‘reflection’ in any hyperbolic line

in DP is an isometry of DP – ‘reflection’ in a circle being interpreted as inversion

(and Exercise 11.3.5 shows that every isometry of DP is a composite of such

reflections).

We shall now establish some new properties of hyperbolic geometry to which

the Poincaré model is particularly well suited, starting with the basic result in

hyperbolic trigonometry.

Theorem 11.3.6

Consider a hyperbolic triangle with angles α, β, γ and sides of length A,B,C

(so that A is the length of the side opposite α, etc.). Then,

coshC = coshA coshB − sinhA sinhB cos γ,
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and two analogous formulas can be obtained by applying the cyclic permuta-

tions α → β → γ → α and A → B → C → A.

This formula is called the ‘hyperbolic cosine rule’ because it becomes

the usual cosine rule when A,B, and C are small: using the approximations

coshA = 1 + 1
2A

2 and sinhA = A, etc. we get

C2 = A2 +B2 − 2AB cos γ

(compare the spherical case treated in Proposition 6.5.3(i)).

Proof

Let a, b, and c be the vertices of the triangle, so that α is the angle at a,

etc. By applying an isometry of DP that takes c to the origin followed by a

suitable rotation about the origin (i.e. another isometry), we can assume that

c = 0 ∈ DP and that a > 0. By Proposition 11.3.4,

a = tanh
1

2
B, b = eiγtanh

1

2
A.

Now

coshA = cosh2
1

2
A+ sinh2

1

2
A =

1 + tanh2 1
2A

sech2 1
2A

=
1 + tanh2 1

2A

1− tanh2 1
2A

=
1 + |a|2
1− |a|2

and by Proposition 11.3.4 again

tanh
1

2
C =

|b− a|
|1− āb| ,

so

coshC =
1 + tanh2 1

2C

1− tanh2 1
2C

=
|1− āb|2 + |b− a|2
|1− āb|2 − |b− a|2

=
(1− āb)(1− ab̄) + (b− a)(b̄ − ā)

(1− āb)(1− ab̄)− (b− a)(b̄ − ā)

=
1 + |a|2 + |b|2 + |a|2|b|2 − 2(āb+ ab̄)

1− |a|2 − |b|2 + |a|2|b|2

=
(1 + |a|2)(1 + |b|2)− 2(āb+ ab̄)

(1− |a|2)(1− |b|2)

= coshA coshB − 4 cos γ
tanh 1

2A tanh 1
2B

(1− tanh2 1
2A)(1− tanh2 1

2B)

= coshA coshB − sinhA sinhB cos γ,

using sinhA = 2 sinh 1
2A cosh 1

2A.
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In particular, we have the hyperbolic analogue of Pythagoras’ theorem:

Corollary 11.3.7

Suppose that a hyperbolic triangle has sides of lengths A,B, and C and that

the angle opposite the side of length C is a right angle. Then,

coshC = coshA coshB.

Further results in hyperbolic trigonometry can be found in the exercises.

EXERCISES

11.3.1 Prove Proposition 11.3.4.

11.3.2 Let l and m be hyperbolic lines in DP that intersect at right angles.

Prove that there is an isometry of DP that takes l to the real axis

and m to the imaginary axis. How many such isometries are there?

11.3.3 Show that the Möbius transformations that take DP to itself are

those of the form

z �→ az + b

b̄z + ā
, |a| > |b|.

Recall (Exercise 6.5.4) that these are unitary Möbius transforma-

tions.

11.3.4 Show that the isometries of DP are the transformations of the fol-

lowing two types:

z �→ az + b

b̄z + ā
, z �→ az̄ + b

b̄z̄ + ā
,

where a and b are complex numbers such that |a| > |b|. Note that

this and the preceding exercise show that the isometries of DP are

exactly the Möbius and conjugate-Möbius transformations that take

DP to itself.

11.3.5 Prove that every isometry of DP is the composite of finitely many

isometries of the two types in Proposition 11.3.3.

11.3.6 Consider a hyperbolic triangle with vertices a, b, and c, sides of length

A,B, and C and angles α, β, and γ (so that A is the length of the

side opposite a and α is the angle at a, etc.). Prove the hyperbolic

sine rule
sinα

sinhA
=

sinβ

sinhB
=

sin γ

sinhC
.
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11.3.7 With the notation in the preceding exercise, suppose that γ = π/2.

Prove that:

(i) cosα = sinhB coshA
sinhC .

(ii) coshA = cosα
sinβ .

(iii) sinhA = tanhB
tanβ .

11.3.8 With the notation in Exercise 11.3.6, prove that

coshA =
cosα+ cosβ cos γ

sinβ sin γ
.

This is the formula we promised at the end of Section 11.2 for the

lengths of the sides of a hyperbolic triangle in terms of its angles.

11.3.9 Show that if R2 is provided with the first fundamental form

4(du2 + dv2)

(1 + u2 + v2)2
,

the stereographic projection map Π : S2\{north pole} → R2 defined

in Example 6.3.5 is an isometry. Note the similarity between this

formula and that in Proposition 11.3.2: the plane with this first fun-

damental form provides a ‘model’ for the sphere in the same way as

the half-plane with the first fundamental form in Proposition 11.3.2

is a ‘model’ for the pseudosphere.

11.4 Hyperbolic parallels

In Euclidean plane geometry, there are many equivalent criteria for two lines l

and m to be parallel. For example:

(i) l and m do not intersect.

(ii) l and m have a common perpendicular line.

(iii) l and m are a constant distance apart.

(A fourth criterion is considered in Exercise 11.4.3.) In hyperbolic geometry,

these conditions are not equivalent. In fact, two distinct hyperbolic lines are

never a constant distance apart (see Exercise 11.4.2), so (iii) is not relevant to

the discussion of parallels in hyperbolic geometry. Further, it is clear that in

hyperbolic geometry (i) does not imply (ii) (consider two half-line geodesics in

H, for example), so we must distinguish two cases:
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Definition 11.4.1

Let l and m be hyperbolic lines in DP that do not intersect at any point of

DP . If l and m intersect at a point of the boundary of DP they are said to be

parallel; otherwise they are said to be ultra-parallel.

In the diagram below, l and m are parallel, and l and n are ultra-parallel.

n

l m

We have already noted (Proposition 11.1.3(ii)) that the parallel axiom does

not hold in hyperbolic geometry. In fact, if a is a point that is not on a

hyperbolic line l, there are infinitely many hyperbolic lines through a that

do not intersect l (see Exercise 11.1.1). The following result shows that exactly

two of these hyperbolic lines are parallel to l.

Proposition 11.4.2

Suppose that a ∈ DP is a point not on a hyperbolic line l. Then, there are

exactly two hyperbolic lines, say m and m′, passing through a that are parallel

to l. The angle between m and m′ at a is 2Π, where

sinΠ = sechd,

and d is the hyperbolic distance of a from l (Exercise 11.1.3). Moreover, a

hyperbolic line through a intersects l if and only if it lies between m and m′

on the same side of a as l, and the hyperbolic line through a perpendicular to

l bisects the angle between m and m′.
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The angle Π is called the angle of parallelism.

ΠΠ

l

m

a

m�

Proof

We first show that there is an isometry of DP that takes l to the real axis and

a to a point on the imaginary axis. In that case, all the assertions made in the

proposition are clear, except for the formula for Π.

Π

Π

0

a

c

r

R

Let ã = P−1(a), l̃ = P−1 (l). There is an isometry F of H that takes l̃ to

the imaginary axis; let b = F (ã). The isometry D1/|b| takes b to a point on the

unit circle v2 + w2 = 1 and fixes the imaginary axis. Now note that P takes

the imaginary axis in H to the real axis in DP and the unit circle in H to the

imaginary axis in DP .
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We can therefore assume that l is the real axis and that a = ir where

r = tanh 1
2d by Proposition 11.3.4. The circle m through a that touches the

real axis at 1 has centre c = 1 + iR and radius R for some R > 0, and so has

equation

|z − 1− iR| = R.

Since m passes through ir, we have |− 1 + i(r −R)|= R, which gives

R =
1 + r2

2r
.

In the right-angled (Euclidean) triangle with vertices a, iR and c, the hy-

potenuse is perpendicular to m, so the angle of the triangle at a is π/2−Π (see

the diagram above). Hence, by Euclidean trigonometry,

R sinΠ = R− r

and we get

sinΠ = 1− r

R
= 1− 2r2

1 + r2
=

1− r2

1 + r2
=

1− tanh2 1
2d

1 + tanh2 1
2d

=
1

coshd
.

As we mentioned above, one characterization of parallel lines in Euclidean

plane geometry is that such lines have a common perpendicular. In hyperbolic

geometry, this property characterizes ultra-parallels:

Proposition 11.4.3

Two hyperbolic lines in DP are ultra-parallel if and only if they have a common

perpendicular (i.e., a hyperbolic line that intersects them both at right-angles).

In that case the common perpendicular is unique.

l
m

n
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In Euclidean plane geometry, of course, two parallel lines have infinitely

many common perpendiculars.

Proof

Suppose first that l and m are hyperbolic lines in DP that have a common

perpendicular n which intersects them at the points a and b. We can assume

that l and n are the real and imaginary axes, respectively, and that a is the

origin (see Exercise 11.3.2). Then m is part of a circle with centre at some point

iR on the imaginary axis, where |R| > 1. Since m intersects C at right angles,

the radius r of C satisfies

R2 = r2 + 1.

In particular, |R| > r, so m does not intersect the real axis. Hence, l and m are

ultra-parallel.

Conversely, suppose that l and m are ultra-parallel. As before, we can as-

sume that l is the real axis. Suppose that m is the circle with centre a and

radius r; then, as above,

|a|2 = r2 + 1. (11.5)

We claim that

− 1 < Re(a) < 1. (11.6)

Indeed, m intersects the real axis at a point v if and only if

|v − a| = r.

In view of (11.5), this gives

v2 − 2vRe(a) + 1 = 0. (11.7)

If |Re(a)| > 1, Eq. 11.7 has two distinct real roots whose product is equal to

1, hence one root v satisfies −1 < v < 1. This means that l and m intersect in

DP , contrary to assumption. Similarly, if |Re(a)| = 1, Eq. 11.10 has ±1 as a

repeated root, so l touches m at 1 or −1 on the boundary of DP , again contrary

to assumption. Hence, (11.6) must hold.

We now consider a circle with centre b on the real axis and radius s. This

intersects both m and C at right angles if and only if

b2 = s2 + 1 and |b− a|2 = r2 + s2.

If Re(a) �= 0, these equations have the unique solution

b =
1

Re(a)
, s =

√

(Re(a)−2 − 1,
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and the corresponding circle n is the unique common perpendicular to l and

m. If Re(a) = 0, it is clear that the imaginary axis is the unique common

perpendicular.

EXERCISES

11.4.1 Which pairs of hyperbolic lines in H are parallel? Ultra-parallel?

11.4.2 Let l be the imaginary axis in H. Show that, for any R > 0, the set

of points that are a distance R from l is the union of two half-lines

passing through the origin, but that these half-lines are not hyper-

bolic lines. This contrasts with the situation in Euclidean geometry,

in which the set of points at a fixed distance from a line is a pair of

lines.

11.4.3 Let a and b be two distinct points in DP , and let 0 < A < π. Show

that the set of points c ∈ DP such that the hyperbolic triangle with

vertices a, b and c has area A is the union of two segments of lines

or circles, but that these are not hyperbolic lines. Note that this

equal-area property could be used to characterize lines in Euclidean

geometry.

11.5 Beltrami–Klein model

The final model of non-Euclidean geometry that we shall discuss was actually

the first to be introduced by Beltrami, but it was Klein who realised that this

model could be used to unify non-Euclidean geometry with projective geometry,

a subject that has been studied since antiquity. (We do not assume that the

reader is familiar with projective geometry.)

The model is constructed by using two projections of the unit sphere S2.

We recall the stereographic projection map Π (Example 6.3.5) from S2 to the

xy-plane. This map defines a diffeomorphism from the ‘southern hemisphere’

S2
− = {(x, y, z) ∈ S2 | z < 0}

to the unit disc

D = {(x, y, 0) ∈ R
3 |x2 + y2 < 1}.

We shall also need the ‘vertical’ projection of R3 onto the xy-plane:

pr(x, y, z) = (x, y, 0).
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This also defines a diffeomorphism from S2
− to D. Hence, the composite map

K = pr ◦Π−1 : D → D

is a diffeomorphism. It is easy to see (Exercise 11.5.1) that, if we identify the

xy-plane with C by (x, y, 0) �→ x+ iy as usual, then

K(z) =
2z

|z|2 + 1
, z ∈ D. (11.8)

Definition 11.5.1

The Beltrami-Klein model DK of non-Euclidean geometry is the disc D
equipped with the first fundamental form for which the diffeomorphism

K : DP → DK

is an isometry.

We shall not need to know the first fundamental form of DK explicitly (it

was actually computed in Exercise 8.3.1(iii)).

The Beltrami-Klein model has the following remarkable property.

Proposition 11.5.2

The hyperbolic lines in the Beltrami-Klein model are the (Euclidean) straight

line segments contained in the disc DK .
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Proof 11.5.2 Let l be the line segment joining points a and b on C . The curve on
S2
− that corresponds to . under the projection pr is the intersection of S2 with

the plane perpendicular to the xy-plane that contains .. This is a semicircle m,

say, that intersects C at right angles at a and b.

N

b

a

`

m

Π(m)

Since Π is a conformal map that takes circles on S2 to lines and circles

in the xy-plane (see Example 6.3.5 and Exercise 6.3.7), Π (m) is an arc of a

circle in D that intersects the boundary of D at right angles, in other words a

hyperbolic line in DP . It follows that every line segment in DK is a hyperbolic

line. Since there is a line segment passing through any given point of DK

in any given direction, these must be all of the hyperbolic lines in DK (see

Proposition 9.2.4).

Corollary 11.5.3

DK is not a conformal model of hyperbolic geometry.

Proof

Consider a hyperbolic triangle in DK . By Proposition 11.5.2 this is also a

Euclidean triangle, so the sum of its internal Euclidean angles is π. But, by

Theorem 11.1.5, the sum of its internal hyperbolic angles is < π.

The isometries of DK can, of course, be deduced from those of DP by using

the isometry K. For example, any rotation about the origin is an isometry of

DK . For, if ρθ is such a rotation by an angle θ, so that ρθ(z) = eiθz, it is clear

from Eq. 11.8 that K ◦ ρθ ◦ K−1 = ρθ and we know that ρθ is an isometry of

DP (see the remarks following the proof of Proposition 11.3.3). But to proceed

further, it is more instructive to take a different, and more geometric, approach.
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Πa(z)

q

r

a

z

p

s

If a ∈ C and |a| > 1, define the perspectivity

Πa : DK → DK

with centre a as follows. Let z ∈ DK and let l be any hyperbolic line in DK

passing through z. Thus, l is a (Euclidean) line segment that intersects C at

two points, say p and q. Let the lines through a and p and through a and q

intersect C again at r and s, respectively (if the line through a and p happens

to be tangent to C at p, then r = p; and similarly for the line through a and

q). Then, Πa(z) is defined to be the point of intersection of the line through a

and z with the line through r and s (see the diagram above).

Of course, it is not obvious that this definition makes sense, i.e., that Πa(z)

depends only on z (and a) and not on the choice of the line l, but this follows

from

Proposition 11.5.4

With the above notation,

Πa = K ◦ Ia,r ◦ K−1,

where r =
√

|a|2 − 1. In particular, Πa is an isometry of DK .

To prove this we need
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Lemma 11.5.5

Let l and m be hyperbolic lines in DK and suppose that these lines intersect

C at the points b, c and d, e, respectively. Suppose that the tangents to C at b

and c intersect at a, and that the extension of m passes through a. Then, l and

m intersect at right angles in the hyperbolic sense.

l

m

b

c

a

e

d
K
−1(m)

K
−1(l)

Proof 11.5.5 The hyperbolic lines K−1(l) and K−1(m) in DP corresponding to l

and m are circular arcs that intersect C at right angles at the points b, c and d, e,

respectively. Let I be the inversion in the circle of whichK−1(l) is an arc, so that

I is an isometry of DP (see Appendix 2, especially PropositionA.2.8). Now I
takesK−1(m) to a circular arc that intersects C at right angles (CorollaryA.2.7),

and it obviously interchanges the points d and e. It follows that I pre-

serves K−1(m). This implies that K−1(l) and K−1(m) are perpendicular in the

Euclidean sense (PropositionA.2.8), and hence in the hyperbolic sense since

DP is a conformal model. Since K : DP → DK is an isometry, l and m are per-

pendicular in the hyperbolic sense.

Proof 11.5.4 Let the tangents from a to C touch it at b and c, let m be the line

segment with endpoints b, c and let the line through a and z intersect C at t

and u. Let l be any line passing through z and let l intersect C at p, q. Let r, s
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be the points of C such that the lines through p and r and through q and s

pass through a, let n be the line segment with endpoints r, s and let u be the

point of intersection of C with the line o passing through a and z. Since z is

the intersection of l and o, K−1(z) is the intersection of K−1(l) and K−1(o);

similarly, K−1(Πa(z)) is the intersection of K−1(n) and K−1(o).

l

n

o

m
at

u

s
c

r

b

By Lemma 11.5.5,m and o are perpendicular in DK , so K−1(m) and K−1(o)

are perpendicular in DP . It follows that Ia,r fixes K−1(o). Since Ia,r takes p to r
and q to s, it takes K−1(l) to K−1(n). Hence, Ia,r takes K−1(z) to K−1(Πa(z)):

Ia,r(K−1(z)) = K−1(Πa(z)).

This is what we wanted to prove.

Now that we have the isometries Πa at our disposal, we can prove a beautiful

formula for the distance between two points of DK . For this, we shall need the

following concept from projective geometry.

Definition 11.5.6

If a, b, c, and d are distinct complex numbers, their cross-ratio is

(a, b; c, d) =
(a− c)(b− d)

(a− d)(b − c)
.

Proposition 11.5.7

Suppose that the points a, b, c, and d lie on a line and that a and b are between

c and d. Then, (a, b; c, d) > 0. Moreover, if p is a point distinct from a, b, c,
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and d and if the lines through p and each of the points a, b, c, and d intersect

another line at a′, b′, c′, and d′, then

(a, b; c, d) = (a′, b′; c′, d′).

This result is expressed by saying that the cross-ratio is a ‘projective

invariant’: the cross-ratio of four points on a line is unchanged when they are

‘projected’ from some point p onto another line.

Proof

Let l be the line containing a, b, c, and d. Since a and b are on the ‘same side’

of l relative to c, arg(a− c) = arg(b − c), so

a− c

b − c
=

|a− c|

|b − c|
.

Similarly,
b− d

a− d
=

|b − d|

|a− d|
.

Hence,

(a, b; c, d) =
|a− c||b− d|

|a− d||b− c|
.

In particular, this cross-ratio is a positive number.

c�

a�

b �

d�

c
a

p

b
d
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Let ∠apb be the angle between the lines through p and a and through p

and b, etc. By the Euclidean sine rule,

|a− c|

sin∠apc
=

|p− c|

sin∠pac
,

|a− d|

sin∠apd
=

|p− d|

sin∠pad
,

|b− c|

sin∠bpc
=

|p− c|

sin∠pbc
,

|b − d|

sin∠bpd
=

|p− d|

sin∠pbd
.

Hence,

(a, b; c, d) =
sin∠apc sin∠bpd

sin∠apd sin∠bpc
.

But obviously ∠a′p′c′ = ∠apc, etc., hence the result.

In particular, the cross-ratio (a, b; c, d), with a, b, c, d ∈ DK , is unchanged

if a, b, c, and d are subjected to any perspectivity. Note that the cross-ratio is

also unchanged if a, b, c, and d are subjected to any rotation about the origin,

since this amounts to multiplying each of a, b, c, and d by a non-zero complex

number.

Theorem 11.5.8

Let a, b ∈ DK and let c, d be the points of intersection of the line through a, b

with C. Then, the Beltrami-Klein distance between a and b is

dDK
(a, b) =

1

2
| ln(a, b; c, d)|.

Proof

We use a suitable isometry of DK to reduce to the case in which a and b are

real. Let l be the line through c and 1, and m the line through d and −1. We

consider two cases, according to whether l and m are parallel (in the Euclidean

sense) or not.

If l and m are parallel, the line joining c and d passes through the origin, and

a suitable rotation about the origin will take c to 1, d to −1 and a, b to points

a′, b′ on the real axis. Such a rotation is an isometry of DK by the remarks

following Corollary 11.5.3.

Suppose, on the other hand, that l and m intersect at a point p, say. If

|p| > 1, the perspectivity Πp takes c to 1, d to −1 and a, b to points a′, b′ on

the line joining −1 and 1, i.e., the real axis. If |p| < 1, the lines l′ joining c

and −1 and m′ joining d and 1 intersect at a point p′ with |p′| > 1 and the

perspectivity Πp′ takes c to −1, d to 1 and a, b to points a′, b′ on the real axis.
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We compute the distance dD K
(a, b) = dD K

(a′, b′) by transferring to DP

using the isometry K : DP → DK , so that dDK
(a′, b′) = dDP

(K−1(a′),K−1(b′)).

Using Proposition 11.3.2, this gives

dDK
(a′, b′) =

∫ K−1(b′)

K−1(a′)

2dv

1− v2
= ln

(1 +K−1(b′))(1 −K−1(a′))

(1 +K−1(a′))(1 −K−1(a′))
. (11.9)

Using the formula (11.8) for K, we find that

K−1(λ) =
1

λ
(1−

√

1− λ2), λ ∈ D,

which implies that
1 +K−1(λ)

1−K−1(λ)
=

√

1 + λ

1− λ
.

Using this, (11.9) becomes

dDK
(a′, b′) =

1

2
ln

(1 + b′)(1− a′)

(1 − b′)(1 + a′)
. (11.10)

On the other hand, we have seen that there is a perspectivity or a rotation about

the origin that takes (a, b, c, d) to (a′, b′, 1,−1) or (a′, b′,−1, 1) with a′, b′ ∈ R,

and that these transformations of DK leave the cross-ratio unchanged (see the

remarks following the proof of Proposition 11.5.7). In the first case,

(a, b; c, d) = (a′, b′; 1,−1) =
(1− a′)(1 + b′)

(1 + a′)(1 − b′)
,

and in the second case,

(a, b; c, d) = (a′, b′;−1, 1) =
(1 + a′)(1 − b′)

(1− a′)(1 + b′)
,

so in both cases

dDK
(a, b) = dDK

(a′, b′) =
1

2
| ln(a, b; c, d)|.

EXERCISES

11.5.1 Prove Eq. 11.8.

11.5.2 Extend the definition of cross-ratio in the obvious way to include the

possibility that one of the points is equal to ∞, e.g., (∞, b; c, d) =

(b − d)/(b − c). Show that, if M : C∞ → C∞ is a Möbius transfor-

mation, then

(M(a),M(b);M(c),M(d)) = (a, b; c, d) for all distinct points

a, b, c, d ∈ C∞. (11.11)
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Show, conversely, that if M : C∞ → C∞ is a bijection satisfying this

condition, then M is a Möbius transformation.

11.5.3 Use the preceding exercise to show that, if (a, b, c) and (a′, b′, c′)

are two triples of distinct points of C∞, there is a unique Möbius

transformation M such that M(a) = a′, M(b) = b′ and M(c) = c′.

11.5.4 Let a, b ∈ C∞ and let d be the spherical distance between the points

of S2 that correspond to a, b under the stereographic projection map

Π (Example 6.3.5). Show that

− tan2
1

2
d =

(

a,−1

ā
; b,−1

b̄

)

.

11.5.5 Show that, if R is the reflection in a line passing through the origin,

then KR = RK. Deduce that R is an isometry of DK .

11.5.6 Show that the isometries of DK are precisely the composites

of (finitely many) perspectivities and reflections in lines passing

through the origin.



12
Minimal surfaces

In Section 9.4 we considered the problem of finding the shortest paths between

two points on a surface. We now consider the analogous problem in one higher

dimension, that of finding a surface of minimal area with a fixed curve as its

boundary. This is called Plateau’s Problem. The solutions to Plateau’s problem

turn out to be surfaces whose mean curvature vanishes everywhere. The study

of these so-called minimal surfaces was initiated by Euler and Lagrange in the

mid-eighteenth century, but new examples of minimal surfaces are still being

discovered.

12.1 Plateau’s problem

In Section 9.4, we found the condition for a curve on a surface to minimize

distance between its endpoints by embedding the given curve in a family of

curves passing through the same two points, and studying how the length of

the curve varies as the curve varies through the family. Accordingly, we shall

now study a family of surface patches στ : U → R3, where U is an open subset

of R2 independent of τ , and τ lies in some open interval (−δ, δ), for some δ > 0.

Let σ = σ0. The family is required to be smooth, in the sense that the map

(u, v, τ) �→ στ (u, v) from the open subset {(u, v, τ) | (u, v) ∈ U, τ ∈ (−δ, δ)}

of R3 to R3 is smooth. The surface variation of the family is the function

ϕ : U → R3 given by
ϕ = σ̇τ |τ=0 ,

where here and elsewhere in this section, a dot denotes d/dτ .

Andrew Pressley, Elementary Differential Geometry: Second Edition, 305
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-891-9 12,
c© Springer-Verlag London Limited 2010
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Let π be a simple closed curve that is contained, along with its interior

int(π ), in U (see Section 3.1). Then π corresponds to a closed curve γτ = στ ◦π

in the surface patch στ , and we define the area function A(τ) to be the area

of the part of στ inside γτ :

A(τ) =

∫

int(π)

dAσ
τ .

Note that, if we are considering a family of surfaces with a fixed boundary

curve γ, then γτ = γ for all τ , and hence ϕτ (u, v) = 0 when (u, v) is a point

on the curve π.

Theorem 12.1.1

With the above notation, assume that the surface variation ϕτ vanishes along

the boundary curve π. Then,

Ȧ(0) = −2

∫

int(π)

H(EG− F 2)1/2α dudv, (12.1)

where H is the mean curvature of σ, E,F and G are the coefficients of its first

fundamental form, and α = ϕ ·N where N is the standard unit normal of σ.

We defer the proof of this theorem to the end of this section.

If σ has the smallest area among all surfaces with the given boundary

curve γ, then A must have an absolute minimum at τ = 0, so Ȧ(0) = 0 for all

smooth families of surfaces as above. This means that the integral in (12.1) must

vanish for all smooth functions α : U → R. As in the proof of Theorem 9.4.1,

this can happen only if the term that multiplies α in the integrand vanishes,

in other words only if H = 0. This suggests the following definition.

Definition 12.1.2

A minimal surface is a surface whose mean curvature is zero everywhere.

Theorem 12.1.1 and the preceding discussion then give

Corollary 12.1.3

If a surface S has least area among all surfaces with the same boundary curve,

then S is a minimal surface.

Minimal surfaces have an interesting physical interpretation as the shapes

taken up by soap films. A soap film has energy by virtue of surface tension,
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and this energy is proportional to its area. A soap film spanning a wire in the

shape of a curve C should therefore adopt the shape of a surface of least area

with boundary C. By Corollary 12.1.3, this will be a minimal surface.

More generally, if the soap film separates two regions of different pressure,

the film will adopt the shape of a surface of constant mean curvature. This is

the case for a soap bubble, for example, for which the air pressure inside the

bubble is greater than the pressure outside. To see this, we apply the principle

of ‘virtual work’. This tells us that, if the soap film is in equilibrium, and

we imagine a (‘virtual’) change in the surface, the change in the energy of the

film must be the same as the work done by the film against the air pressure.

If p is the pressure difference, the force exerted by the air on a small piece of

the surface of area ∆A is p∆A, and so the work done when it moves a small

distance α perpendicular to itself is αp∆A. On the other hand, the formula in

Theorem 12.1.1 shows that the change in area of the surface is proportional to

αH∆A (note that α is the component of the variation ϕ perpendicular to the

surface). So p is proportional to H . Since the pressure difference must be the

same across the whole surface, so must the mean curvature H . Surfaces of

constant non-zero mean curvature were discussed in Section 8.5.

For the moment, we give only one example of a minimal surface; others will

be given in the next section. This example already shows, however, that the

converse of Corollary 12.1.3 is false.

Example 12.1.4

The surface obtained by revolving the curve x = cosh z in the xz-plane

around the z-axis is called a catenoid (a picture of a catenoid can be found

in Exercise 5.3.1). The catenoid can be parametrized by

σ(u, v) = (coshu cos v, coshu sin v, u).

Then,

σu = (sinhu cos v, sinhu sin v, 1),σv = (− coshu sin v, coshu cos v, 0),

σu × σv = (− coshu cos v,− coshu sin v, sinhu coshu),

N = (−sechu cos v,−sechu sin v, tanhu),

σuu = (coshu cos v, coshu sin v, 0),

σuv = (− sinhu sin v, sinhu cos v, 0),

σvv = (− coshu cos v,− coshu sin v, 0).

This gives the coefficients of the first and second fundamental forms of σ as

E = G = cosh2 u, F = 0, L = −1, M = 0, N = 1.
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The first three of these equations show that the parametrization σ is conformal,

and Corollary 8.1.3 gives

H =
LG− 2MF +NE

2(EG− F 2)
=

− cosh2 u+ cosh2 u

2 cosh4 u
= 0,

showing that the catenoid is a minimal surface.

C+

C-

S

S0

Fix a > 0, and let b = cosha. The surface S consisting of the part of the

catenoid with |z| < a has the two circles C±of radius b in the planes z = ±a

with centres on the z-axis as boundary. Another surface spanning the same two

circles is, of course, the surface S0 consisting of the two discs x2 + y2 ≤ b2 in

the planes z = ±a. The area of S is, by Proposition6.4.2,

∫ 2π

0

∫ a

−a

(EG− F 2)1/2dudv =

∫ 2π

0

∫ a

−a

cosh2 u dudv = 2π(a+ sinh a cosha).

The area of S0 is, of course, 2πb2 = 2π cosh2 a. So the minimal surface S will

not minimize the area among all surfaces with boundary the two circles C± if

cosh2 a < a+ sinh a cosha, i.e., if
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(12.2)
1 + e−2a 

< 2a.
2a

1 +e
−2a

a

The graphs of 1+ e−2a and 2a as functions of a clearly intersect in exactly one

point a = a0, say, and the inequality (12.2) holds if a > a0. If this condition is

satisfied, the catenoid is not area minimizing.

It can be shown that if a < a0 the catenoid does have least area among all

surfaces spanning the circles C+ and C−.

It is time to prove Theorem 12.1.1.

Proof

Let ϕτ = σ̇τ , so that ϕ0 = ϕ, and let Nτ be the standard unit normal of στ .

There are smooth functions ατ , βτ and γτ of (u, v, τ) such that

ϕτ = ατNτ + βτστ
u + γτστ

v ,

so that α = α0. To simplify the notation, we drop the superscript τ for the rest

of the proof; at the end of the proof we put τ = 0.

We have

A(τ) =

∫

int(π)

‖ σu × σv ‖ dudv =

∫

int(π)

N · (σu × σv) dudv,

so

Ȧ =

∫

int(π)

∂

∂τ
(N · (σu × σv)) dudv. (12.3)

Now,

∂

∂τ
(N · (σu × σv)) = Ṅ · (σu × σv) +N · (σ̇u × σv) +N · (σu × σ̇v). (12.4)

Since N is a unit vector,

Ṅ · (σu × σv) = Ṅ ·N ‖ σu × σv ‖= 0.
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On the other hand,

N · (σ̇u × σv) =
(σu × σv) · (σ̇u × σv)

‖ σu × σv ‖

=
(σu · σ̇u)(σv · σv)− (σu · σv)(σv · σ̇u)

‖ σu × σv ‖

=
G(σu · σ̇u)− F (σv · σ̇u)

(EG − F 2)1/2
,

using Proposition 6.4.2. Similarly,

N · (σu × σ̇v) =
E(σv · σ̇v)− F (σu · σ̇v)

(EG− F 2)1/2
.

Substituting these results into Eq. 12.4, we get

∂

∂τ
(N ·(σu×σv)) =

E(σv · σ̇v)− F (σ̇u · σv + σu · σ̇v) +G(σu · σ̇u)

(EG − F 2)1/2
. (12.5)

Now

σ̇u = ϕu = αuN+ βuσu + γuσv + αNu + βσuu + γσuv,

∴ σu · σ̇u = Eβu + Fγu + (σu ·Nu)α + (σu · σuu)β + (σu · σuv)γ.

Since σu ·Nu = −σuu ·N = −L, σu ·σuu = 1
2Eu and σu ·σuv = 1

2Ev, we get

σu · σ̇u = Eβu + Fγu − Lα+
1

2
Euβ +

1

2
Evγ.

Similarly,

σv · σ̇u =Fβu +Gγu −Mα+ (Fu − 1

2
Ev)β +

1

2
Guγ,

σu · σ̇v =Eβv + Fγv −Mα+
1

2
Evβ + (Fv −

1

2
Gu)γ,

σv · σ̇v =Fβv +Gγv −Nα+
1

2
Guβ +

1

2
Gvγ.

Substituting these last four equations into the right-hand side of Eq. 12.5,

simplifying, and using the formula for H in Corollary8.1.3, we find that

∂

∂τ
(N · (σu × σv)) =

(

β(EG− F 2)1/2
)

u
+
(

γ(EG− F 2)1/2
)

v

−2αH(EG− F 2)1/2.

(12.6)

Comparing with Eq. 12.3, and reinstating the superscripts, we see that we must

prove that
∫

int(π)

{(

β0(EG− F 2)1/2
)

u
+
(

γ0(EG− F 2)1/2
)

v

}

dudv = 0. (12.7)
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But by Green’s theorem (see Section 3.2), this integral is equal to
∫

π

(EG− F 2)1/2(β0dv − γ0du),

and this obviously vanishes because β0 = γ0 = 0 along the boundary curve π.

This completes the proof of Theorem 12.1.1.

Note that we did not quite use the full force of the assumptions in

Theorem 12.1.1, since they imply that α0 (= α) vanishes along the bound-

ary curve, and this was not used in the proof. So Eq. 12.1 holds provided the

surface variation ϕ is normal to the surface along the boundary curve.

Note also that Theorem 12.1.1 is intuitively obvious for variations ϕ that

are parallel to the surface, i.e., those for which α = 0 everywhere on the surface,

since such a parallel variation causes the surface to slide along itself and will not

change the shape, and in particular the area, of the surface. Thus, the main

point is to prove Theorem 12.1.1 for normal variations, i.e., those for which

β = γ = 0 everywhere on the surface. Making this restriction simplifies the

above proof considerably.

EXERCISES

12.1.1 Show that the Gaussian curvature of a minimal surface is ≤ 0 every-

where, and that it is zero everywhere if and only if the surface is an

open subset of a plane. We shall obtain a much more precise result

in Corollary 12.5.6.

12.1.2 Let σ : U → R3 be a minimal surface patch, and assume that

Aσ(U) < ∞ (see Definition 6.4.1). Let λ 	= 0 and assume that the

principal curvatures κ of σ satisfy |λκ| < 1 everywhere, so that the

parallel surface σλ of σ (Definition 8.5.1) is a regular surface patch.

Prove that

A
σ

λ(U) ≤ Aσ(U)

and that equality holds for some λ 	= 0 if and only if σ(U) is an open

subset of a plane. (Thus, any minimal surface is area-minimizing

among its family of parallel surfaces.)

12.1.3 Show that there is no compact minimal surface.

12.1.4 Show that applying a dilation or an isometry of R3 to a minimal

surface gives another minimal surface. Can there be a local isometry

between a minimal surface and a non-minimal surface?
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12.2 Examples of minimal surfaces

The simplest minimal surface is, of course, the plane, for which both principal

curvatures are zero everywhere. Apart from this, the first minimal surfaces to

be discovered were those in the following two examples.

Example 12.2.1

If a is a non-zero constant, the surface Sa obtained by rotating the curve

x = 1
a coshaz in the xz-plane around the z-axis is called a catenoid. More

generally, a catenoid is a surface obtained by applying an isometry of R3 to

a surface Sa. Any catenoid S is a minimal surface, since S can be obtained

from the special catenoid S1 in Example 12.1.4 by applying an isometry and a

dilation (Exercise 12.1.4). A picture of a catenoid can be found in Exercise 5.3.1.

Catenoids are surfaces of revolution. In fact, apart from the plane, they are

the only minimal surfaces of revolution:

Proposition 12.2.2

Any minimal surface of revolution S is an open subset of a plane or a catenoid.

Proof

By applying an isometry of R3, we can assume that the axis of the surface S is

the z-axis and the profile curve lies in the xz-plane. We parametrize S in the

usual way (see Example 5.3.2):

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

where the profile curve u �→ (f(u), 0, g(u)) is assumed to be unit-speed and

f > 0. From Examples 6.1.3 and 7.1.2, the first and second fundamental forms

are

du2 + f(u)2dv2 and (ḟ g̈ − f̈ ġ)du2 + f ġdv2,

respectively, a dot denoting d/du. By Corollary 8.1.3, the mean curvature is

H =
1

2

(

ḟ g̈ − f̈ ġ +
ġ

f

)

.

We suppose now that, for some value of u, say u = u0, we have ġ(u0) 	= 0.

Since ġ is continuous (because g is smooth), we shall then have ġ(u) 	= 0 for u
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in some open interval containing u0. Let (α, β) be the largest such interval.

Supposing now that u ∈ (α, β), the unit-speed condition ḟ2 + ġ2 = 1 gives

(as in Example 8.1.4)

ḟ g̈ − f̈ ġ = −
f̈

ġ
,

and so we get

H =
1

2

(

ġ

f
−

f̈

ġ

)

.

Since ġ2 = 1− ḟ2, S is minimal if and only if

f f̈ = 1− ḟ2. (12.8)

To solve the differential equation (12.8), put h = ḟ , and note that

f̈ =
dh

dt
=

dh

df

df

dt
= h

dh

df
.

Hence, Eq. 12.8 becomes

fh
dh

df
= 1− h2.

Note that, since ġ 	= 0, we have h2 	= 1, and so we can integrate this equation

as follows:
∫

hdh

1− h2
=

∫

df

f
,

∴ h =

√

a2f2 − 1

af
,

where a is a non-zero constant. (We have omitted a ±, but the sign can be

changed by replacing u by −u if necessary.) Writing h = df/du and integrating

again,
∫

afdf
√

a2f2 − 1
=

∫

du,

∴ f =
1

a

√

1 + a2(u+ b)2,

where b is a constant. By a change of parameter u �→ u+ b, we can assume that

b = 0. So,

f =
1

a

√

1 + a2u2.
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To compute g, we have

ġ2 = 1− ḟ2 = 1− h2 =
1

a2f2
,

∴

dg

du
= ±

1√
1 + a2u2

,

∴ g = ±
1

a
sinh−1(au) + c (where c is a constant),

∴ au = ± sinh(a(g − c)),

∴ f =
1

a
cosh(a(g − c)).

Thus, the profile curve of S is

x =
1

a
cosh(a(z − c)).

This surface is obtained by applying to the catenoid Sa a translation along the

z-axis.

We are not quite finished, however. So far, we have only shown that the

open subset of S corresponding to u ∈ (α, β) is part of the catenoid, for in the

proof we used in an essential way that ġ 	= 0. This is why the proof has so far

excluded the possibility that S is a plane. To complete the proof, we argue as

follows. Suppose that β < ∞. Then, if the profile curve is defined for values of

u ≥ β, we must have ġ(β) = 0, for otherwise ġ would be non-zero on an open

interval containing β, which would contradict our assumption that (α, β) is the

largest open interval containing u0 on which ġ 	= 0. But the formulas above

show that

ġ2 =
1

1 + a2u2
if u ∈ (α, β),

and so, since ġ is a continuous function of u, ġ(β) = ±(1+ a2β2)−1/2 	= 0. This

contradiction shows that the profile curve is not defined for values of u ≥ β. Of

course, this also holds trivially if β = ∞. A similar argument applies to α, and

shows that (α, β) is the entire domain of definition of the profile curve. Hence,

the whole of S is an open subset of a catenoid.

The only remaining case to consider is that in which ġ(u) = 0 for all values

of u for which the profile curve is defined. But then g(u) is a constant, say d,

and S is an open subset of the plane z = d.

Example 12.2.3

A helicoid is a ruled surface swept out by a straight line that rotates at constant

speed about an axis perpendicular to the line while simultaneously moving at

constant speed along the axis. By applying an isometry of R3 we can take the
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axis to be the z-axis. Let ω be the angular velocity of the rotating line and

α its speed along the z-axis. If the line starts along the x-axis, at time v the

centre of the line is at (0, 0, αv) and it has rotated by an angle ωv. Hence, the

point of the line initially at (u, 0, 0) is now at the point

σ(u, v) = (u cosωv, u sinωv, αv).

We leave it to Exercise 12.2.1 to check that this is a minimal surface. (A picture

of a helicoid can be found in Exercise 4.2.6.)

We have the following analogue of Proposition 12.2.2.

Proposition 12.2.4

Any ruled minimal surface is an open subset of a plane or a helicoid.

Proof

We take the usual parametrization

σ(u, v) = γ(u) + vδ(u)

(see Example 5.3.3), where γ is a curve that meets each of the rulings and δ(u)

is a vector parallel to the ruling through γ(u). We begin the proof by making

some simplifications to the parametrization.

First, we can certainly assume that ‖δ(u)‖= 1 for all values of u. We assume

also that δ̇ is never zero, where the dot denotes d/du. (We shall consider later

what happens if δ̇(u) = 0 for some values of u.) We can then assume that

γ̇ · δ̇ = 0 (see Exercise 5.3.4).

We have σu = γ̇ + vδ̇, σv = δ, so

E = ‖ γ̇ + vδ̇ ‖2, F = (γ̇ + vδ̇) · δ = γ̇ · δ, G = 1.

Let A =
√
EG− F 2. Then,

N = A−1(γ̇ + vδ̇)× δ.

Next, we have σuu = γ̈ + vδ̈, σuv = δ̇, σvv = 0, so

L = A−1(γ̈ + vδ̈) · ((γ̇ + vδ̇)× δ),

M = A−1δ̇ · ((γ̇ + vδ̇)× δ) = A−1δ̇.(γ̇ × δ),

N = 0.
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Hence, the minimal surface condition

H =
LG− 2MF +NE

2A2
= 0

gives

(γ̈ + vδ̈) · ((γ̇ + vδ̇)× δ) = 2(δ · γ̇)(δ̇ · (γ̇ × δ)).

This equation must hold for all values of (u, v). Equating coefficients of powers

of v gives

γ̈ · (γ̇ × δ) = 2(δ · γ̇)(δ̇ · (γ̇ × δ)), (12.9)

γ̈ · (δ̇ × δ) + δ̈ · (γ̇ × δ) = 0, (12.10)

δ̈ · (δ̇ × δ) = 0. (12.11)

Equation 12.11 shows that δ, δ̇ and δ̈ are linearly dependent. Since δ and δ̇

are perpendicular unit vectors, there are smooth functions α(u) and β(u) such

that

δ̈ = αδ + βδ̇.

But, since δ is unit-speed, δ̇ · δ̈ = 0. Also, differentiating δ · δ̇ = 0 gives

δ · δ̈ = −δ̇ · δ̇ = −1. Hence, α = −1 and β = 0, so

δ̈ = −δ. (12.12)

Equation 12.12 shows that the curvature of the curve δ is 1, and that its

principal normal is −δ. Hence, its binormal is δ̇ × (−δ), and since

d

du
(δ̇ × δ) = δ̈ × δ + δ̇ × δ̇ = −δ × δ = 0,

it follows that the torsion of δ is zero. Hence, δ parametrizes a circle of radius

1 (see Proposition2.3.5). By applying an isometry of R3, we can assume that

δ is the circle with radius 1 and centre the origin in the xy-plane, so that

δ(u) = (cosu, sinu, 0).

From Eq. 12.12, we get δ̈ · (γ̇ × δ) = −δ · (γ̇ × δ) = 0, so by Eq. 12.10,

γ̈ · (δ̇ × δ) = 0.

It follows that γ̈ is parallel to the xy-plane, and hence that

γ(u) = (f(u), g(u), au+ b),

where f and g are smooth functions and a and b are constants. If a = 0, the

surface is an open subset of the plane z = b. Otherwise, Eq. 12.9 gives

g̈ cosu− f̈ sinu = 2(ḟ cosu+ ġ sinu). (12.13)
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We finally make use of the condition γ̇ · δ̇ = 0, which gives

ḟ sinu = ġ cosu. (12.14)

Differentiating this gives

f̈ sinu+ ḟ cosu = g̈ cosu− ġ sinu. (12.15)

Equations 12.13 and 12.15 together give

ḟ cosu+ ġ sinu = 0

and using Eq. 12.14 we get ḟ = ġ = 0. Thus, f and g are constants. By a

translation of the surface, we can assume that the constants f , g and b are

zero, so that γ(u) = (0, 0, au) and

σ(u, v) = (v cosu, v sinu, au),

which is a helicoid.

We assumed at the beginning that δ̇ is never zero. If δ̇ is always zero, then

δ is a constant vector and the surface is a generalized cylinder. But in fact a

generalized cylinder is a minimal surface only if the cylinder is an open subset

of a plane (Exercise 12.2.3). The proof is now completed by an argument similar

to that used at the end of the proof of Proposition 12.2.2, which shows that

the whole surface is an open subset of a plane or a helicoid.

After the catenoid and helicoid, the next minimal surfaces to be discovered

were the following two.

Example 12.2.5

Enneper’s surface is

σ(u, v) =

(

u−
u3

3
+ uv2, v −

v3

3
+ u2v, u2 − v2

)

.

It was shown in Exercise 8.5.1 that this is a minimal surface.
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Strictly speaking, this is not a surface patch as it is not injective. The

self-intersections are clearly visible in the picture above. However, if we restrict

(u, v) to lie in sufficiently small open sets, σ will be injective (see Exercise

5.6.3).

Example 12.2.6

Scherk’s surface is the surface with Cartesian equation

z = ln
( cos y

cosx

)

.

It was shown in Exercise 8.5.2 that this is a minimal surface. Note that the

surface exists only when cosx and cos y are both > 0 or both < 0, in other

words in the interiors of the white squares of the following chess board pattern,

in which the squares have vertices at the points (π/2+mπ, π/2+nπ), where m

and n are integers, no two squares with a common edge have the same colour,

and the square containing the origin is white:

The white squares have centres of the form (mπ, nπ), where m and n are

integers with m+ n even. Since, for such m,n,

cos(y + nπ)

cos(x+mπ)
=

cos y

cosx
,

it follows that the part of the surface over the square with centre (mπ, nπ) is

obtained from the part over the square with centre (0, 0) by the translation

(x, y, z) �→ (x+mπ, y + nπ, z). So it suffices to exhibit the part of the surface

over a single square (see below).
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EXERCISES

12.2.1 Show that every helicoid is a minimal surface.

12.2.2 Show that the surfaces σt in the isometric deformation of a helicoid

into a catenoid given in Exercise 6.2.2 are minimal surfaces. (This is

‘explained’ in Exercise 12.5.4.)

12.2.3 Show that a generalized cylinder is a minimal surface only when the

cylinder is an open subset of a plane.

12.2.4 Verify that Catalan’s surface

σ(u, v) =
(

u− sinu coshv, 1− cosu cosh v,−4 sin
u

2
sinh

v

2

)

is a conformally parametrized minimal surface. (As in the case of

Enneper’s surface, Catalan’s surface has self-intersections, so it is

only a surface if we restrict (u, v) to sufficiently small open sets.)
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Show that:

(i) The parameter curve on the surface given by u = 0 is a straight

line.

(ii) The parameter curve u = π is a parabola.

(iii) The parameter curve v = 0 is a cycloid (see Exercise 1.1.7).

Show also that each of these curves, when suitably parametrized,

is a geodesic on Catalan’s surface. (There is a sense in which

Catalan’s surface is ‘designed’ to have a cycloidal geodesic – see

Exercise 12.5.5.)

12.3 Gauss map of a minimal surface

Recall from Section 7.2 that the Gauss map G of an oriented surface S associates

to each point p ∈ S the unit normal Np of S at p regarded as a point of the

unit sphere S2. We begin with the following ‘local’ result:

Proposition 12.3.1

With the above notation, suppose that the Gaussian curvature of S is non-zero

at the point p. Then, there is an open subset V of S containing p such that

the restriction of G to V is injective.

This result (and its proof) implies that, if the Gaussian curvature of S is

nowhere zero, the Gauss map of S is a local diffeomorphism.

Proof

Let σ : U → R3 be a surface patch of S containing p, say p = σ(u0, v0), and

let N : U → R3 be the standard unit normal of σ. By Eq. 8.2,

Nu ×Nv = K σu × σv,

where K is the Gaussian curvature of S, so by Exercise 5.6.3 there is an open

subset W of U containing (u0, v0) such that the restriction of the map N to W

is injective. Then, σ(W ) is an open subset of S containing p and the restriction

of G to σ(W ) is injective.
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Theorem 12.3.2

Let S be a minimal surface with nowhere vanishing Gaussian curvature. Then,

the Gauss map is a conformal map from S to S2.

Proof

By Theorem 6.3.3, we have to show that the bilinear forms 0 , 〉 and G∗〈 , 〉
are proportional. Now, if p ∈ S and v,w ∈ TpS,

G∗0v,w〉 = 〈DpG(v),DpG(w)〉= 〈−W(v),−W(w)〉 = 〈W2(v),w〉,

where W is the Weingarten map; the last equation follows from the fact that

W is self-adjoint (Corollary 7.2.4). But, by Exercise 8.1.6 and the fact that the

mean curvature H is zero, we have

W2 = −K,

the Gaussian curvature of S. It follows that

G∗0 , 〉 = −K0 , 〉,

as we want.

We saw in Exercise 6.3.4 that a conformal parametrization of the plane is

necessarily holomorphic or anti-holomorphic, so this proposition strongly sug-

gests a connection between minimal surfaces and holomorphic functions. This

connection turns out to be very extensive, and we shall give an introduction to

it in Section 12.5.

EXERCISES

12.3.1 Let S be a connected surface whose Gauss map is conformal.

(i) Show that, if p ∈ S and if the mean curvature H of S at p is

non-zero, there is an open subset of S containing p that is part

of a sphere.

(ii) Deduce that, if H is non-zero at p, there is an open subset of

S containing p on which H is constant.

(iii) Deduce that S is either a minimal surface or an open subset of

a sphere.
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12.3.2 Show that:

(i) The Gauss map of a catenoid is injective and its image is the

whole of S2 except for the north and south poles.

(ii) The image of the Gauss map of a helicoid is the same as that of

a catenoid, but that infinitely many points on the helicoid are

sent by the Gauss map to any given point in its image.

(The fact that the Gauss maps of a catenoid and a helicoid have the

same image is ‘explained’ in Exercise 12.5.3 (ii).)

12.4 Conformal parametrization of minimal

surfaces

Our goal in this section is to prove the following theorem.

Theorem 12.4.1

Let S be a minimal surface and let p ∈ S. Then, there is a surface patch σ of

S containing p that is conformal.

Recall from Section 6.3 that this means that the first fundamental form of

σ(u, v) is of the form E(du2 + dv2) for some smooth function E(u, v).

Proof

Let p = (x0, y0, z0). By Exercise 5.6.4, if the tangent plane of S at p does

not contain the z-axis, there is an open set U in R2 containing (x0, y0) and

a smooth function f : V → R such that an open subset of S consisting of

the points (x, y, z) with (x, y) ∈ V coincides with the graph of the function f .

(If the tangent plane at p does contain the z-axis, then S will be a graph of

the form x = f(y, z) or y = f(x, z) near p.) We can also assume that V is an

open disc

D = {(x, y) | (x− x0)
2 + (y − y0)

2 < r2},

for some r > 0, since any open set in R2 containing (x0, y0) contains such a

disc. We must therefore show that the surface patch

σ̃(x, y) = (x, y, f(x, y)), (x, y) ∈ D,

has a conformal reparametrization.
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The coefficients of the first fundamental form of σ̃ are

E = 1 + f2
x , F = fxfy, G = 1 + f2

y .

We show first that
(

F

A

)

x

=

(

E

A

)

y

,

(

G

A

)

x

=

(

F

A

)

y

, (12.16)

where A =
√
EG− F 2. Indeed,

(

F

A

)

x

−
(

E

A

)

y

=
(1 + f2

x + f2
y )(fxxfy + fxfxy)− fxfy(fxfxx + fyfxy)

(1 + f2
x + f2

y )
3/2

−
2(1 + f2

x + f2
y )fxfxy − (1 + f2

x)(fxfxy + fyfyy)

(1 + f2
x + f2

y )
3/2

=
fy((1 + f2

y )fxx − 2fxfyfxy + (1 + f2
x)fyy)

(1 + f2
x + f2

y )
3/2

= 0,

by Exercise 8.1.1. The second equation in (12.16) is proved similarly.

From advanced calculus, we know that Eqs. 12.16 imply the existence of

smooth functions ϕ, ψ : D → R such that

ϕx =
E

A
, ϕy =

F

A
, ψx =

F

A
, ψy =

G

A
.

In fact, we can just define

ϕ(x, y) =

∫ 1

0

xE((1 − t)r0 + tr) + yF ((1− t)r0 + tr)

A((1− t)r0 + tr)
dt,

where r = (x, y), r0 = (x0, y0); and similarly for ψ.

The reparametrization map we want is

u(x, y) = x+ ϕ(x, y), v(x, y) = y + ψ(x, y).

Note that
(

ux uy

vx vy

)

=

(

1 + ϕx ϕy

ψx 1 + ψy

)

=

(

1 + E
A

F
A

F
A 1 + G

A

)

(12.17)

so
∣

∣

∣

∣

ux uy

vx vy

∣

∣

∣

∣

=

(

1 +
E

A

)(

1 +
G

A

)

− F 2

A2
= 2 +

E +G

A
> 0.

By the Inverse Function Theorem 5.6.1, the function F : D → R2 given by

F (x, y) = (u(x, y), v(x, y)) has a smooth inverse function F−1 (we may have to

replace D by a smaller open disc with centre (x0, y0)). Let

F−1(u, v) = (x(u, v), y(u, v)).
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We shall show that the reparametrization

σ(u, v) = (x(u, v), y(u, v), f(x(u, v), y(u, v)))

of σ̃ is conformal.

By the chain rule,

(

xu xv

yu yv

)(

ux uy

vx vy

)

= I,

so

(

xu xv

yu yv

)

=

(

ux uy

vx vy

)−1

=
1

E +G+ 2A

(

G+A −F

−F E +A

)

by Eq. 12.17. Letting z(u, v) = f(x(u, v), y(u, v)), we get (again using the chain

rule)

zu = fxxu + fyyu =
fx(G+A)− fyF

E +G+ 2A
,

zv = fxxv + fyyv =
fy(E +A)− fxF

E +G+ 2A
.

Hence,

σu.σu = x2
u + y2u + z2u

=
(G+A)2 + F 2 + (fx(G+A)− fyF )2

(E +G+ 2A)2

=
(G+A)2 + F 2 + (E − 1)(G+A)2 + (G− 1)F 2 − 2(G+A)F 2

(E +G+ 2A)2

=
E(G+A)2 +GF 2 − 2(G+A)F 2

(E +G+ 2A)2

=
EA2 + 2A(EG− F 2) +G(EG− F 2)

(E +G+ 2A)2

=
A2

E +G+ 2A
,

using f2
x = E − 1, f2

y = G − 1 to pass from the second line to the third and

A2 = EG − F 2 to pass from the fifth line to the sixth. Similar calculations

show that

σv.σv =
A2

E +G+ 2A
, σu.σv = 0.
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EXERCISES

12.4.1 Use Proposition12.3.2 to give another proof of Theorem 12.4.1 for

surfaces S with nowhere-vanishing Gaussian curvature.

12.5 Minimal surfaces and holomorphic

functions

In this section, we shall make use of certain elementary properties of holomor-

phic functions. Readers without the necessary background in complex analysis

may safely omit this section, the results of which are not used anywhere else

in the book.

Let σ : U → R3 be a conformal surface patch. We introduce complex

coordinates in the plane of which U is an open subset by setting

ζ = u+ iv, (u, v) ∈ U,

and we define

ϕ(ζ) = σu − iσv. (12.18)

Thus, ϕ = (ϕ1, ϕ2, ϕ3) has three components, each of which is a complex-valued

function of (u, v), i.e., of ζ. The basic result which establishes the connection be-

tween minimal surfaces and holomorphic functions is the following proposition.

Proposition 12.5.1

Let σ : U → R3 be a conformal surface patch. Then σ is minimal if and only

if the function ϕ defined in Eq. 12.18 is holomorphic on U .

To say that ϕ is holomorphic means that each of its components ϕ1, ϕ2 and

ϕ3 is holomorphic.

Proof

Let ϕ(u, v) be a complex-valued smooth function, and let α and β be its real

and imaginary parts, so that ϕ = α+ iβ. The Cauchy–Riemann equations

αu = βv and αv = −βu

are the necessary and sufficient conditions for ϕ to be holomorphic. Applying

this to each of the components of ϕ, we see that ϕ is holomorphic if and only if
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(σu)u = (−σv)v and (σu)v = −(−σv)u. (12.19)

The second equation imposes no condition on σ, and the first is equivalent to

σuu + σvv = 0. But it was shown in Exercise 8.5.1 that a conformal surface

patch σ is minimal if and only if σuu + σvv is zero.

The holomorphic function ϕ associated to a minimal surface σ is not

arbitrary:

Theorem 12.5.2

If σ : U → R3 is a conformally parametrized minimal surface, the vector-

valued holomorphic function ϕ = (ϕ1, ϕ2, ϕ3) defined in Eq. 12.18 satisfies the

following conditions:

(i) ϕ2
1 + ϕ2

2 + ϕ2
3 = 0.

(ii) ϕ is nowhere zero.

Conversely, if U is simply-connected, and if ϕ1, ϕ2 and ϕ3 are holomorphic

functions on U satisfying conditions (i) and (ii) above, there is a conformally

parametrized minimal surface σ : U → R3 such that ϕ = (ϕ1, ϕ2, ϕ3) satis-

fies Eq. 12.18. Moreover, σ is uniquely determined by ϕ1, ϕ2 and ϕ3 up to a

translation.

An open subset U of R2 is said to be simply-connected if every simple closed

curve in U can be shrunk to a point staying inside U . Intuitively, this means

that U has no ‘holes’.

Simply-connected Not simply-connected

In the course of the following proof, and in the proof of Proposition 12.5.5

below, we shall need to recall that, if F is a holomorphic function of ζ = u+ iv,

then
Fu = F ′, Fv = iF ′, (F )u = F ′, (F )v = −iF ′,

where F ′ = dF/dζ is the complex derivative of F , and the bar denotes complex-

conjugate.
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Proof

Suppose first that σ = (σ1, σ2, σ3) is minimal, where σk : U → R for k = 1, 2, 3.

We have to show that ϕ = (ϕ1, ϕ2, ϕ3) satisfies conditions (i) and (ii). Since

ϕk = σk
u − iσk

v for k = 1, 2, 3,

3
∑

k=1

ϕ2
k =

3
∑

k=1

(

(σk
u)

2 − (σk
v )

2 − 2iσk
uσ

k
v

)

= ‖ σu ‖2 − ‖ σv ‖2 −2iσu · σv,

(12.20)

which vanishes since σ is conformal. Finally, ϕ = 0 if and only if σu = σv = 0,

and this is impossible since σ is regular.

For the converse, take ϕ satisfying conditions (i) and (ii). We must show

that ϕ arises from a minimal surface as above, and that this minimal surface

is unique up to a translation of R3. Fix (u0, v0) ∈ U and define σ as the real

part of a complex line integral:

σ(u, v) = Re

∫

π

ϕ(ξ)dξ,

where π is any curve in U from (u0, v0) to (u, v) ∈ U . The fact that U is

simply-connected implies, by virtue of Cauchy’s Theorem, that
∫

π
ϕ(ξ)dξ is in-

dependent of the path π chosen, and hence so is σ(u, v). Now, Φ (ζ) =
∫

π
ϕ(ξ)dξ

is a holomorphic function of ζ = u+ iv, and Φ ′(ζ) = ϕ(ζ). Hence, by the facts

stated just before the beginning of the proof,

σu = Re(Φ u) = Re(Φ ′) = Re(ϕ),

σv = Re(Φ v) = Re(i Φ ′) = −Im(ϕ),
(12.21)

so ϕ = σu − iσv.

To complete the proof, we have to show that σ is a conformal surface

patch. But, condition (ii) and Eqs. 12.21 show that σu and σv are not both

zero. By condition (i) and Eq. 12.20, ‖ σu ‖= ‖ σv ‖ and σu · σv = 0. Since

σu and σv are not both zero, this proves that σu and σv are both non-zero

and perpendicular, hence linearly independent, so that σ is a regular surface

patch; it also proves that σ is conformal.

If another conformal minimal surface σ̃ corresponds to the same holomor-

phic function ϕ as σ, then σ̃u = σu and σ̃v = σv everywhere on U , which

implies that σ̃ − σ is a constant, say a , so that σ̃ is obtained from σ by

translating by the vector a .

Before giving some examples, we observe that, if a holomorphic function ϕ

satisfies the conditions in Theorem 12.5.2, so does iϕ. If ϕ is the holomorphic

function corresponding to a minimal surface S, the minimal surface to which

iϕ corresponds is called the conjugate of S. It is well defined by S up to a

translation.
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Example 12.5.3

The parametrization

σ(u, v) = (coshu cos v, coshu sin v, u)

of the catenoid is conformal (see the solution of Exercise 6.2.3). The associated

holomorphic function is

ϕ(ζ) = σu − iσv

= (sinhu cos v + i coshu sin v, sinhu sin v − i coshu cos v, 1)

= (sinh(u + iv),−i cosh(u+ iv), 1)

= (sinh ζ,−i cosh ζ, 1).

Note that conditions (i) and (ii) in Theorem 12.5.2 are satisfied, since ϕ is

clearly never zero and the sum of the squares of its components is

sinh2 ζ − cosh2 ζ + 1 = 0.

Let us determine the conjugate minimal surface σ̃ of the catenoid. From

the proof of Theorem 12.5.2,

σ̃(u, v) = Re

∫

π

(i sinh ξ, cosh ξ, i) dξ

= Re(i cosh ζ, sinh ζ, iζ)

= (− sinhu sin v, sinhu cos v,−v),

up to a translation. If we reparametrize by defining ũ = sinhu, ṽ = v+π/2, we

get the surface
(ũ, ṽ) �→ (ũ cos ṽ, ũ sin ṽ,−ṽ),

after translating by (0, 0,−π/2), which is obtained from the helicoid in Exercise

4.2.6 by reflecting in the z-axis. Note that the parametrization of the helicoid

given in Exercise 4.2.6 is not conformal, so the constructions in this section

cannot be applied to it.

It is actually possible to ‘solve’ the conditions on ϕ in Theorem 12.5.2.

Proposition 12.5.4

Let f(ζ) be a holomorphic function on an open set U in the complex plane,

not identically zero, and let g(ζ) be a meromorphic function on U such that, if

ζ0 ∈ U is a pole of g of order m ≥ 1, say, then ζ0 is also a zero of f of order

≥ 2m. Then,

ϕ =

(

1

2
f(1− g2),

i

2
f(1 + g2), fg

)

(12.22)
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satisfies conditions (i) and (ii) in Theorem 12.5.2, and conversely every

holomorphic function ϕ satisfying these conditions arises in this way.

The correspondence given by Theorem 12.5.2 and Proposition 12.5.4 be-

tween pairs of functions f and g and minimal surfaces is called Weierstrass’

representation.

Proof

Suppose that f and g are as in the statement of the proposition. If g has a pole

of order m ≥ 1 at ζ0 ∈ U , and f has a zero of order n ≥ 2m at ζ0, then the

Laurent expansions of f and g about ζ0 are of the form

f(ζ) = a(ζ − ζ0)
n + · · · and g(ζ) =

b

(ζ − ζ0)m
+ · · · ,

where a and b are non-zero complex numbers and the · · · indicates terms in-

volving higher powers of ζ − ζ0. Then,

f(1± g2) = ±ab2(ζ − ζ0)
n−2m + · · · and fg = ab(ζ − ζ0)

n−m + · · ·

involve only non-negative powers of ζ − ζ0, so ϕ is holomorphic near ζ0. Since

it is clear that ϕ is holomorphic wherever g is holomorphic, it follows that the

function ϕ defined by Eq. 12.22 is holomorphic everywhere on U . It is clear

that ϕ is identically zero only if f is identically zero, and simple algebra shows

that ϕ satisfies condition (i) in Theorem 12.5.2.

Conversely, suppose that ϕ = (ϕ1, ϕ2, ϕ3) is a holomorphic function satis-

fying conditions (i) and (ii) in Theorem 12.5.2. If ϕ1 − iϕ2 is not identically

zero, define

f = ϕ1 − iϕ2, g =
ϕ3

ϕ1 − iϕ2
. (12.23)

Since ϕ is holomorphic, f is holomorphic and g is meromorphic. Condition (i)

implies that (ϕ1 + iϕ2)(ϕ1 − iϕ2) = −ϕ2
3, and hence that

ϕ1 + iϕ2 = −fg2. (12.24)

Simple algebra shows that Eqs. 12.23 and 12.24 imply Eq. 12.22. Equation 12.24

implies that fg2 is holomorphic, and the argument with Laurent expansions

in the first part of the proof now gives the condition on the zeros and poles

of f and g. Finally, if ϕ1 − iϕ2 = 0, we repeat the above argument replacing

ϕ1 ± iϕ2 by ϕ1∓ iϕ2 (note that ϕ1− iϕ2 and ϕ1+ iϕ2 cannot both be zero, for

if they were we would have ϕ1 = ϕ2 = 0, hence ϕ3 = 0 by condition (i), and

this would violate condition (ii)).

We give only one application of Weierstrass’ representation.
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Proposition 12.5.5

The Gaussian curvature of the minimal surface corresponding to the functions

f and g in Weierstrass’ representation is

K =
−16|dg/dζ|2

|f |2(1 + |g|2)4
.

Proof

This is a straightforward, if tedious, computation, and we shall omit many of

the details. Define ϕ by taking the complex-conjugate of each component of ϕ.

Then, σu = 1
2 (ϕ + ϕ), σv = 1

2i(ϕ − ϕ). Since ϕ · ϕ = ϕ · ϕ = 0, the first

fundamental form is 1
2ϕ · ϕ(du2 + dv2). Substituting the formula for ϕ from

Eq. 12.22 and simplifying, we find that the first fundamental form is

1

4
|f |2(1 + |g|2)2(du2 + dv2). (12.25)

Next,

σu × σv =
1

4 i
( ϕ + ϕ) × ( ϕ−ϕ) =

1

2 i
ϕ× ϕ,

∴ ‖ σu × σv ‖2 = −
1

4
( ϕ× ϕ) · ( ϕ×ϕ) = −

1

4
( ( ϕ ·ϕ) ( ϕ ·ϕ) − ( ϕ · ϕ) 2 ) =

1

4
( ϕ ·ϕ) 2,

∴ N = i
ϕ× ϕ

ϕ ·ϕ
.

In terms of f and g, this becomes

N =
1

1 + |g|2
(
g + g,−i(g − g), |g|2 − 1

)
. (12.26)

Using the remarks preceding the proof of Theorem 12.5.2 and the formulas

L = −σu ·Nu, M = −σu ·Nv, N = −σv ·Nv

(which follow by differentiating σu ·N = σv ·N = 0), we find that the second

fundamental form is

−
1

2

(
(fg′ + fg′)(du2 + dv2) + 2i(fg′ − fg′)dudv

)
. (12.27)

Combining Eqs. 12.25–12.27, and using the formula for the Gaussian curvature

K in Corollary 8.1.3, we finally obtain the formula in the statement of the

proposition.
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Corollary 12.5.6

Let S be a minimal surface that is not part of a plane. Then, the zeros of the

Gaussian curvature of S are isolated.

This means that, if the Gaussian curvature K vanishes at a point p ∈

S, then K does not vanish at any other point of S sufficiently near to p.

More precisely, if p lies in a surface patch σ of S, say p = σ(u0, v0), there

is a number 1 2 0 such that K does not vanish at the point σ(u, v) ∈ S if

0 < (u− u0)
2 + (v − v0)

2 < 12.

Proof

From the formula for K in Proposition 12.5.5, K vanishes exactly where the

meromorphic function g′ vanishes. If g′ is zero everywhere, so is K and S is

an open subset of a plane (this was shown in Proposition 8.2.9, but follows

immediately from Eq. 12.26 which shows that N is constant if g is constant).

But it is a standard result of complex analysis that the zeros of a non-zero

meromorphic function are isolated, so if K is not identically zero its zeros must

be isolated.

EXERCISES

12.5.1 Find the holomorphic function ϕ corresponding to Enneper’s mini-

mal surface given in Example 12.2.5. Show that its conjugate mini-

mal surface coincides with a reparametrization of the same surface

rotated by π/4 around the z-axis.

12.5.2 Find a parametrization of Henneberg’s surface, the minimal sur-

face corresponding to the functions f(ζ) = 1 − ζ−4, g(ζ) = ζ

in Weierstrass’ representation. The following are a ‘close up’ view

and a ‘large scale’ view of this surface.

Henneberg: close up
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Henneberg: Large scale

12.5.3 Show that, if ϕ satisfies the conditions in Theorem 12.5.2, so does

aϕ for any non-zero constant a ∈ C; let σa be the minimal surface

patch corresponding to aϕ, and let σ1 = σ be that corresponding

to ϕ. Show that:

(i) If a ∈ R, then σa is obtained from σ by applying a dilation and

a translation.

(ii) If |a| = 1, the map σ(u, v) �→ σa(u, v) is an isometry, and the

tangent planes of σ and σ̃ at corresponding points are parallel

(in particular, the images of the Gauss maps of σ and σa are

the same).

12.5.4 Show that if the function ϕ in the preceding exercise is that cor-

responding to the catenoid (see Example 12.5.3), the surface σeit

coincides with the surface denoted by σt in Exercise 6.2.3.

12.5.5 Let γ : (α, β) → R3 be a (regular) curve in the xy-plane, say

γ(u) = (f(u), g(u), 0),

and assume that there are holomorphic functions F and G defined

on a rectangle

U = {u+ iv ∈ C |α < u < β, −ǫ < v < ǫ},

for some ǫ > 0, and such that F (u) = f(u) and G(u) = g(u) if u is

real and α < u < β. Note that (with a dash denoting d/dz as usual),

F ′(z)2 +G′(z)2 	= 0 if Im(z) = 0,
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so by shrinking ǫ if necessary we can assume that F ′(z)2+G′(z)2 	= 0

for all z ∈ U . Show that:

(i) The vector-valued holomorphic function

ϕ = (F ′, G′, i(F ′2 +G′2)1/2)

satisfies the conditions of Theorem 12.5.2 and therefore defines

a minimal surface σ(u, v).

(ii) Up to a translation, σ(u, 0) = γ(u) for α < u < β.

(iii) γ is a pre-geodesic on σ (see Exercise 9.1.2).

(iv) If we start with the cycloid

γ(u) = (u− sinu, 1− cosu, 0),

the resulting surface σ is, up to a translation, Catalan’s surface and

we have ‘explained’ why Catalan’s surface has a cycloidal geodesic –

see Exercise 12.2.4.



13
The Gauss–Bonnet theorem

The Gauss–Bonnet theorem is the most beautiful and profound result in

the theory of surfaces. Its most important version relates the average of the

Gaussian curvature to a property of the surface called its ‘Euler number’ which

is ‘topological’, i.e., it is unchanged by any diffeomorphism of the surface. Such

diffeomorphisms will in general change the value of the Gaussian curvature,

but the theorem says that its average over the surface does not change. The

real importance of the Gauss–Bonnet theorem is as a prototype of analogous

results which apply in higher dimensional situations, and which relate geomet-

rical properties to topological ones. The study of such relations was one of the

most important themes of twentieth century mathematics, and continues to be

actively studied today.

13.1 Gauss–Bonnet for simple closed curves

The simplest version of the Gauss–Bonnet Theorem involves simple closed

curves on a surface. In the special case when the surface is a plane, these

curves have been discussed in Section 3.1. For a general surface, we make the

following definition.

Andrew Pressley, Elementary Differential Geometry: Second Edition, 335
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-891-9 13,
c© Springer-Verlag London Limited 2010
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not allowedallowed

p

p

Definition 13.1.1

A curve γ(t) = σ(u(t), v(t)) on a surface patch σ : U → R3 is called a simple

closed curve with period T if π(t) = (u(t), v(t)) is a simple closed curve in

R2 with period T such that the region int(π) of R2 enclosed by π is entirely

contained in U (see the diagrams above). The curve γ is said to be positively-

oriented if π is positively-oriented. Finally, the image of int(π) under the map

σ is defined to be the interior int(γ) of γ.

We can now state the first version of the Gauss–Bonnet Theorem.

Theorem 13.1.2

Let γ(s) be a unit-speed simple closed curve on a surface patch σ of length

ℓ(γ), and assume that γ is positively-oriented. Then,

∫ ℓ(γ)

0

κgds = 2π −
∫

int(γ)

KdAσ,

where κg is the geodesic curvature of γ, K is the Gaussian curvature of σ and

dAσ is the area element of σ (see Section 6.4).

We use s to denote the parameter of γ to emphasize that γ is unit-speed.

The double integral on the right-hand side of the equation in Theorem 13.1.2

is called the total curvature of the region int(γ).

Proof

We start by computing the geodesic curvature of γ. For this, we shall make use

of a smooth orthonormal basis {e′, e′′} of the tangent plane at each point of the

surface patch, where ‘smooth’ means that e′ and e′′ are smooth functions of
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the surface parameters (u, v). Then, {e ′, e ′′,N} is an orthonormal basis of R3

(N being the standard unit normal of σ), and we shall assume that it is right-

handed, i.e., that N = e′ × e′′. This can always be achieved by interchanging

e′ and e′′ if necessary. Note that the dashes on e′ and e′′ have nothing to do

with derivatives.

Let θ(s) be the oriented angle ê′γ̇ between the unit tangent vector γ̇(s) of

γ at γ(s) and the unit vector e′ at the same point. Thus,

γ̇ = cos θe′ + sin θe′′. (13.1)

Then,

N× γ̇ = − sin θe′ + cos θe′′. (13.2)

N

e��

e�

:
°

°

¾

µ

Now, by Eq. 13.1,

γ̈ = cos θė′ + sin θė′′ + θ̇(− sin θe′ + cos θe′′), (13.3)

so by Eqs. 13.2 and 13.3 the geodesic curvature of γ is

κg = (N× γ̇) · γ̈ (see Section 7.3)

= θ̇(− sin θe′ + cos θe′′) · (− sin θe′ + cos θe′′)

+(− sin θe′ + cos θe′′) · (cos θė′ + sin θė′′)

= θ̇ + cos2 θ(ė′ · e′′)− sin2 θ(ė′′ · e′)
+ sin θ cos θ(ė′′ · e′′ − ė′ · e′) (by Eqs. 13.1 and 13.2).

Since e′ and e′′ are perpendicular unit vectors,

e′ · ė′ = e′′ · ė′′ = 0, ė′ · e′′ = −e′ · ė′′.

Hence,

κg = θ̇ − e′ · ė′′. (13.4)
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Thus, to compute the left-hand side of the equation in Theorem 13.1.2, we

must compute the integrals of θ̇ and of e′ · ė′′ around the curve γ. We begin

with the latter, for which we shall need the following lemma.

Lemma 13.1.3

Let

Edu2 + 2Fdudv +Gdv2 and Ldu2 + 2Mdudv +Ndv2

be the first and second fundamental forms of σ, respectively. Then, with the

above notation, we have

e′u · e′′v − e′′u · e′v =
LN −M2

(EG− F 2)1/2
. (13.5)

Assuming this for a moment, we compute

∫ ℓ(γ)

0

e′ · ė′′ds =

∫ ℓ(γ)

0

e′ · (u̇e′′
u
+ v̇e′′

v
)ds =

∫

π

(e′ · e′′
u
)du+ (e′ · e′′

v
)dv.

By Green’s theorem (see Section 3.2), this can be rewritten as a double integral:

∫ ℓ(γ)

0

e′ · ė′′ds =
∫

int(π)

{(e′ · e′′v )u − (e′ · e′′u)v}dudv

=

∫

int(π)

{(e′u · e′′v )− (e′v · e′′u)}dudv

=

∫

int(π)

LN −M2

(EG− F 2)1/2
dudv (by Lemma 13.1.3)

=

∫

int(π)

LN −M2

EG− F 2
(EG− F 2)1/2dudv

=

∫

int(π)

KdAσ (see Section 6.4). (13.6)

If we combine Eqs. 13.4 and 13.6 and compare with the statement of the

theorem, we see that what remains is to prove that

∫ ℓ(γ)

0

θ̇ ds = 2π.

This is a version of Hopf’s Umlaufsatz (cf. Theorem 3.1.4). We cannot give a

fully satisfactory proof of it here but we offer the following heuristic argument.

The main observation is that, if γ̃ is any other simple closed curve contained

in the interior of γ, there is a smooth family of simple closed curves γτ , defined
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for 0 ≤ τ ≤ 1, say, with γ0 = γ and γ1 = γ̃ (see Section 9.4 for the notion of

a smooth family of curves). The existence of such a family is supposed to be

‘intuitively obvious’.

°°

°̃

°¿

Note, however, that it is crucial that the interior of π is entirely contained in

U , otherwise such a family will not exist, in general (see the diagram below).

Observe next that the integral
∫ ℓ(γτ )

0
θ̇ ds should depend continuously on τ .

Further, since γτ and e′ return to their original values as one goes once round

γτ , the integral is always an integer multiple of 2π. These two facts imply that

the integral must be independent of τ – for by the intermediate value theorem

a continuous variable cannot change from one integer to a different integer

without passing through some non-integer value. To compute
∫ ℓ(γ)

0 θ̇ ds, we can

therefore replace γ by any other simple closed curve γ̃ in the interior of γ, since

this will not change the value of the integral. We take γ̃ to be the image under

σ of a small circle in the interior of π. It is ‘intuitively clear’ that

∫ ℓ(γ̃)

0

θ̇ ds = 2π,
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because

(i) e′ is essentially constant at all points of γ̃ (because the circle is very small),

and

(ii) the tangent vector to γ̃ rotates by 2π on going once round γ̃ because the

interior of γ̃ can be considered to be essentially part of a plane, and it is

‘intuitively clear’ that the tangent vector of a simple closed curve in the

plane rotates by 2π on going once round the curve (indeed, this is the

content of Theorem 3.1.4).

This completes the ‘proof’ of Hopf’s Umlaufsatz. To complete the proof of

Theorem 13.1.2, all that remains is to prove Lemma 13.1.3.

Proof 13.1.3 We can express the partial derivatives of e′ and e′′ with respect

to u and v in terms of the orthonormal basis {e′, e′′,N}. Since both partial

derivatives of e′ are perpendicular to e′, the e′ components of e′u and e′v are

zero (and similarly for e′′). Thus,

e′u = αe′′ + λ′N,

e′v = βe′′ + µ′N,

e′′u = − α′e′ + λ′′N,

e′′v = − β′e′ + µ′′N,

for some scalars α, β, α′, β′, λ′, µ′, λ′′, µ′′ (which may depend on u and v).

Moreover, by differentiating the equation e′ · e′′ = 0 with respect to u, we

see that e′u · e′′ = −e′ · e′′u. i.e., α
′ = α (and similarly β′ = β). Thus,

e′u = αe′′ + λ′N,

e′v = βe′′ + µ′N,

e′′u = − αe′ + λ′′N, (13.7)

e′′v = − βe′ + µ′′N.

It follows that

e′u · e′′v − e′′u · e′v = λ′µ′′ − λ′′µ′. (13.8)

On the other hand, combining the formula

Nu ×Nv = Kσu × σv

(see Eq. 8.2) with the formulas

N =
σu × σv

‖ σu × σv ‖
, ‖ σu × σv ‖= (EG− F 2)1/2
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(see Proposition 6.4.2), we get

Nu ×Nv =
LN −M2

(EG− F 2)1/2
N,

and hence

(Nu ×Nv) ·N =
LN −M2

(EG− F 2)1/2
. (13.9)

Since N = e′ × e′′,

(Nu ×Nv) ·N =(Nu ×Nv) · (e
′ × e′′),

=(Nu · e′)(Nv · e
′′)− (Nu · e′′)(Nv · e

′)

= (N · e′u)(N · e′′v)− (N · e′′u)(N · e′v) (13.10)

=λ′µ′′ − λ′′µ′ by Eq. 13.7,

where in passing from the second line to the third we used the equations

Nu · e′ = −N · e′u, Nu · e′′ = −N · e′′u,

Nv · e
′ = −N · e′v, Nv · e

′′ = −N · e′′v ,

which follow by differentiating N · e′ = 0 = N · e′′ with respect to u and

v. Putting Eqs. 13.9 and 13.10 together shows that the right-hand sides of

Eqs. 13.5 and 13.8 are equal. Since Eq. 13.8 has already been established, this

proves Eq.13.5.

EXERCISES

13.1.1 Suppose that a surface patch σ has Gaussian curvature ≤ 0 every-

where. Prove that there are no simple closed geodesics on σ. How

do you reconcile this with the fact that the parallels of a circular

cylinder are geodesics?

13.1.2 Let γ be a unit-speed curve in R3 with nowhere vanishing curvature.

Let n be the principal normal of γ, viewed as a curve on S2, and let

s be the arc-length of n. Show that the geodesic curvature of n is,

up to a sign,
d

ds

(
tan−1 τ

κ

)
,

where κ and τ are the curvature and torsion of γ. Show also that, if

n is a simple closed curve on S2, the interior and exterior of n are

regions of equal area (Jacobi’s Theorem).
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13.2 Gauss–Bonnet for curvilinear polygons

For the next version of Gauss–Bonnet, we shall have to generalize our notion

of a curve by allowing the possibility of ‘ corners’. More precisely, we make the

following definition.

Definition 13.2.1

A curvilinear polygon in R2 is a continuous map π : R → R2 such that, for

some real number T and some points 0 = t0 < t1 < · · · < tn = T :

(i) π(t) = π(t′) if and only if t′ − t is an integer multiple of T .

(ii) π is smooth on each of the open intervals (t0, t1), (t1, t2), . . . , (tn−1, tn).

(iii) The one-sided derivatives

π̇−(ti) = lim
t↑ti

π(t)− π(ti)

t− ti
, π̇+(ti) = lim

t↓ti

π(t)− π(ti)

t− ti
(13.11)

exist for i = 1, . . . , n and are non-zero and not parallel.

The points γ(ti) for i = 1, . . . , n are called the vertices of the curvilinear poly-

gon π, and the segments of it corresponding to the open intervals (ti−1, ti) are

called its edges.

It makes sense to say that a curvilinear polygon π is positively-oriented:

for all t such that π(t) is not a vertex, the vector ns obtained by rotating

π̇ anticlockwise by π/2 should point into int(π). (The region int(π) enclosed

by π makes sense because the Jordan Curve Theorem applies to curvilinear

polygons in the plane.)

°+
®

±. °-
.

Now let σ : U → R3 be a surface patch and let π : R → U be a curvilinear

polygon in U , as in Definition 13.2.1. Then, γ = σ ◦ π is called a curvilin-

ear polygon on the surface patch σ, int(γ) is the image under σ of int(π),

the vertices of γ are the points γ(ti) for i = 1, . . . , n, and the edges of γ are

the segments of it corresponding to the open intervals (ti−1, ti). Since σ is
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allowable, the one-sided derivatives

γ̇−(ti) = lim
t↑ti

γ(t)− γ(ti)

t− ti
, γ̇+(ti) = lim

t↓ti

γ(t)− γ(ti)

t− ti

exist and are not parallel.

Let θ±i be the angles between γ̇±(ti) and e′, defined as in Eq. 13.1, let

δi = θ+i − θ−i be the external angle at the vertex γ(ti), and let αi = π − δi be

the internal angle. Since the tangent vectors γ̇+(ti) and γ̇−(ti) are not parallel,

the angle δi is not a multiple of π. Note that all of these angles are well defined

only up to multiples of 2π. We assume from now on that 0 < αi < 2π for

i = 1, . . . , n.

A curvilinear polygon γ is said to be unit-speed if ‖ γ̇ ‖= 1 whenever γ̇

is defined, i.e., for all t such that γ(t) is not a vertex of γ. We denote the

parameter of γ by s if γ is unit-speed. The period of γ is then equal to its

length ℓ(γ), which is the sum of the lengths of the edges of γ.

Theorem 13.2.2

Let γ be a positively-oriented unit-speed curvilinear polygon with n edges on

a surface σ, and let α1, α2, . . . , αn be the interior angles at its vertices. Then,
∫ ℓ(γ)

0

κgds =

n∑

i=1

αi − (n− 2)π −

∫

int(γ)

KdAσ.

Proof

Exactly the same argument as in the proof of Theorem 13.1.2 shows that
∫ ℓ(γ)

0

κgds =

∫ ℓ(γ)

0

θ̇ds−

∫

int(γ)

KdAσ.

We shall prove that ∫ ℓ(γ)

0

θ̇ds = 2π −
n∑

i=1

δi. (13.12)

Assuming this, we get
∫ ℓ(γ)

0

κgds = 2π −

n∑

i=1

δi −

∫

int(γ)

KdAσ

= 2π −

n∑

i=1

(π − αi)−

∫

int(γ)

KdAσ

=

n∑

i=1

αi − (n− 2)π −

∫

int(γ)

KdAσ.
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To establish Eq. 13.12, we imagine ‘smoothing’ each vertex of γ as shown

in the following diagram.

If the ‘smoothed’ curve γ̃ is smooth (!), then, in an obvious notation,

∫ ℓ(γ̃)

0

˙̃θds = 2π. (13.13)

Since γ and γ̃ are the same except near the vertices of γ, the difference

∫ ℓ(γ̃)

0

˙̃θds−

∫ ℓ(γ)

0

θ̇ds (13.14)

is a sum of n contributions, one from near each vertex. Near γ(si), the picture is

s�i

s��i

si

i.e., γ and γ̃ agree except when s belongs to a small interval (s′i, s
′′
i ), say,

containing si, so the contribution from the ith vertex is

∫ s′′i

s′i

˙̃θds−

∫ si

s′i

θ̇ds−

∫ s′′i

si

θ̇ds.
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The first integral is the angle between ˙̃γ(s′′i ) and ˙̃γ(s′i), which as s′i and s′′i
tend to si becomes the angle between γ̇+(si) and γ̇−(si), i.e., δi. On the other

hand, since γ(s) is smooth on each of the intervals (s′i, si) and (si, s
′′
i ), the last

two integrals go to zero as s′i and s′′i tend to si. Thus, the contribution to the

expression (13.14) from the ith vertex tends to δi as s′i and s′′i tend to si .

Summing over all the vertices, we get

∫ ℓ(γ̃)

0

˙̃θds−

∫ ℓ(γ)

0

θ̇ds =

n∑

i=1

δi.

Equation 13.12 now follows from this and Eq. 13.13.

Corollary 13.2.3

If γ is a curvilinear polygon with n edges each of which is an arc of a geodesic,

then the internal angles α1, α2, . . . , αn of the polygon satisfy the equation

n∑

i=1

αi = (n− 2)π +

∫

int(γ)

KdAσ.

Proof

This is immediate from Theorem 13.2.2, since κg = 0 along a geodesic.

As a special case of Corollary 13.2.3, consider an n-gon in the plane with

straight edges. Since K = 0 for the plane, Corollary 13.2.3 gives

n∑

i=1

αi = (n− 2)π,

a well-known result of elementary geometry.

For a curvilinear n-gon on S2 whose sides are arcs of great circles, we have

K = 1 so
∑

αi exceeds the plane value (n − 2)π by the area
∫
dAσ of the

polygon. Taking n = 3, we get for the area of a spherical triangle with angles

α, β, γ whose edges are arcs of great circles,

A = α+ β + γ − π.

This is just Theorem 6.4.7, which is therefore a special case of Gauss–Bonnet.

Finally, for a geodesic n-gon on the pseudosphere (see Section 8.3), for which

K = −1, we see that
∑

αi is less than (n− 2)π by the area of the polygon:

A = (n− 2)π − α1 − α2 − · · · − αn,

which is Theorem 11.1.5.
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EXERCISES

13.2.1 Consider the surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

where γ(u) = (f(u), 0, g(u)) is a unit-speed curve in the xz-plane.

Let u1 < u2 be constants, let γ1 and γ2 be the two parallels u = u1

and u = u2 on σ, and let R be the region of the uv-plane given by

u1 ≤ u ≤ u2, 0 < v < 2π.

Compute

∫ ℓ(γ1)

0

κgds,

∫ ℓ(γ2)

0

κgds and

∫

R

KdAσ,

and explain your result on the basis of the Gauss–Bonnet theorem.

13.3 Integration on compact surfaces

The most important version of the Gauss–Bonnet theorem applies to compact

surfaces. Before we prove it (in the next section), we must first discuss the

integration of functions on such surfaces. Our approach is a little non-standard,

and we shall not attempt to give complete proofs. This section can be omitted

by readers willing to accept the existence of an integral on S that has reasonable

properties.

Suppose that f : S → R is a smooth function on a compact surface S. If f

vanishes outside some set that is contained in a single surface patch σ : U → R3,

we can define the integral of f by using the formulas from Section 6.4:
∫

S

f dA =

∫

U

f(σ(u, v)) ‖ σu × σv ‖ dudv. (13.15)

However, if f does not have this property, another method of defining the

integral of f must be found.

The idea is to ‘thicken’ the surface S to obtain an open subset V of R3

that contains S. The function f is extended to a function on V by defining the

extension to be constant in directions perpendicular to the surface. Then, the

volume integral ∫∫∫

V

f(x, y, x) dxdydz
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should be approximately the ‘thickness’ of V multiplied by the integral of f

over the surface S.

Recall first that S is orientable (Corollary5.4.5), so there is a smooth choice

of unit normal Np at every point p ∈ S. Let ǫ > 0 and define S(−ǫ,ǫ) to be the

set of points of R3 of the form

p+ tNp, p ∈ S, t ∈ (−ǫ, ǫ),

so that S(−ǫ,ǫ) has ‘thickness’ 2ǫ. (Thus, S(−ǫ,ǫ) is the region of R3 contained

between two parallel surfaces of S – see Definition 8.5.1.) It can be shown that:

(i) S(−ǫ,ǫ) is an open subset of R3.

(ii) If ǫ is sufficiently small, the map σ(−ǫ,ǫ) : (p, t) �→ p + tNp is injective

(p ∈ S, t ∈ (−ǫ, ǫ)).

By (ii), we can define a function f (−ǫ,ǫ) : S(−ǫ,ǫ) → R by

f (−ǫ,ǫ)(p+ tNp) = f(p).

Note that f (−ǫ,ǫ) agrees with f at points of S, and f (−ǫ,ǫ) is constant along

each line perpendicular to S. Then, we define the integral of f over the surface

S to be ∫

S

f dA = lim
ǫ→ 0

1

2ǫ

∫

S ( −ǫ , ǫ )

f (−ǫ,ǫ)(x, y, z) dxdydz. (13.16)

We must now do two things: show that this definition agrees with the ex-

pected formula (13.15) when f vanishes outside some surface patch, and show

that the limit in the definition (13.16) exists for any f .

Suppose first that f vanishes outside some set that is contained in a surface

patch σ : U → R3 of S. Then, by the change of variable formula for triple

integrals,
∫

σ(U)( −ǫ , ǫ )

f (−ǫ,ǫ)(x, y, z) dxdydz

=

∫

U×(−ǫ,ǫ)

f (−ǫ,ǫ)(σ(u, v) + tN(u, v)) |D(u, v, t)| dudvdt, (13.17)

where D is the determinant of the Jacobian matrix J of σ(−ǫ,ǫ). The rows of

J are the components of the vectors σu + tNu, σv + tNv and N, so

D = N · ((σu + tNu)× (σv + tNv))

(see Exercise 13.3.1). Hence,

D = N · (σu × σv) + tg(u, v) + t2h(u, v) = ‖ σu × σv ‖ + tg(u, v) + t2h(u, v),
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where g and h are smooth functions. If ǫ (and hence t) are very small, the

integrand on the right-hand side of Eq. 13.17 is very nearly equal to

f (−ǫ,ǫ)(σ(u, v)) ‖ σu × σv ‖= f(σ(u, v)) ‖ σu × σv ‖ .

Thus, the right-hand side of Eq. 13.17 becomes

2ǫ

∫

U

f(σ(u, v)) ‖ σu × σv ‖ dudv.

Dividing by 2ǫ and letting ǫ tend to zero (which makes the approximations we

have made into equalities), we obtain the expression in Eq. 13.15.

This argument makes plausible that the limit in Eq. 13.16 exists, and has

the expected value, when the function f vanishes outside some surface patch.

To deal with the case of an arbitrary smooth function f : S → R, one makes use

of a ‘partition of unity’. This is a finite set of smooth functions ϕ1, ϕ2, . . . , ϕN

on S such that:

(i) Each ϕk is ≥ 0 everywhere and vanishes outside some surface patch.

(ii) ϕ1 + ϕ2 + · · ·+ ϕN = 1.

We shall not describe how to construct such functions here, but the idea is

indicated in Exercise 13.3.2 which treats a one-dimensional analogue. Assuming

that we have a partition of unity, we can write f as a finite sum

f = fϕ1 + fϕ2 + · · ·+ fϕN

of smooth functions, each of which vanishes outside some surface patch. Then,

lim
ǫ30

1

2ǫ

∫

S(−ǫ , ǫ )

f (−ǫ,ǫ)(x, y, z) dxdydz

=
N∑

k=1

lim
ǫ→0

1

2ǫ

∫

S(−ǫ , ǫ )

(fϕk)
(−ǫ,ǫ)(x, y, z) dxdydz.

Since each of the limits in the sum on the right-hand side is already known to

exist, so does the limit on the left-hand side.

EXERCISES

13.3.1 Show that, if a 3 × 3 matrix A has the vectors a,b, and c as rows,

then

det(A) = a · (b× c).
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13.3.2 Let n be a positive integer. Show that there are smooth functions

ϕ1, ϕ2, . . . , ϕn−1 such that

(i) ϕk(t) > 0 for k−1
n < t < k+1

n and ϕk(t) = 0 otherwise;

(ii) ϕ1(t) + ϕ2(t) + · · ·+ ϕn−1(t) = 1 for all 0 < t < 1.

13.4 Gauss–Bonnet for compact surfaces

The most important version of the Gauss–Bonnet theorem applies to a compact

surface S. It is obtained by covering a compact surface S with curvilinear

polygons that fit together properly, applying Theorem 13.2.2 to each one, and

adding up the results. We begin to make this more precise with the following

definition.

Definition 13.4.1

Let S be a surface, with atlas consisting of the patches σi : Ui → R3. A trian-

gulation of S is a collection of curvilinear polygons, each of which is contained,

together with its interior, in one of the σi(Ui), such that:

(i) Every point of S is in at least one of the curvilinear polygons.

(ii) Two curvilinear polygons are either disjoint, or their intersection is a com-

mon edge or a common vertex.

(iii) Each edge is an edge of exactly two polygons.

Thus, situations like that shown above are not allowed.
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Example 13.4.2

A triangulation of S2 with eight polygons is obtained by intersecting it with

the three coordinate planes:

x

y

z

We state without proof:

Theorem 13.4.3

Every compact surface has a triangulation with finitely many polygons.

We introduce the following number associated to any triangulation:

Definition 13.4.4

The Euler number χ of a triangulation of a compact surface S with finitely

many polygons is

χ = V − E + F,

where

V = the total number of vertices of the triangulation,

E = the total number of edges of the triangulation,

F = the total number of polygons of the triangulation.

For the triangulation of the sphere given above, V = 6, E = 12 and F = 8,

and so χ = 6− 12 + 8 = 2.

The importance of the Euler number is that, although different triangu-

lations of a given surface will in general have different numbers of vertices,

edges and polygons, χ is actually independent of the triangulation and depends
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only on the surface. For example, we can get another triangulation of S2 by

‘inflating’ a regular tetrahedron:

This time, V = 4, E = 6 and F = 4, and so χ = 4 − 6 + 4 = 2, the same as

before. This property of χ is a consequence of the following theorem.

Theorem 13.4.5

Let S be a compact surface. Then, for any triangulation of S,
∫

S

KdA = 2πχ,

where χ is the Euler number of the triangulation.

Since
∫
S
KdA is independent of the triangulation, Theorem 13.4.5 implies

Corollary 13.4.6

The Euler number χ of a triangulation of a compact surface S depends only

on S and not on the choice of triangulation.

We now give the proof of Theorem 13.4.5.

Proof

By Corollary 5.4.5, there is a smooth choice of unit normal N at every point of

S. As above, we fix a triangulation of S with polygons Pi, say, each of which

is contained in the image of some patch σi : Ui → R3 in the atlas of S, say

Pi = σi(Ri), where Ri ⊆ Ui; we can assume that N is the standard unit normal

of each σi. By Theorem 13.2.2,
∫

Ri

KdAσi
= ∠i − (ni − 2)π +

∫ ℓ(γi)

0

κg ds, (13.18)
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where ni is the number of vertices of Pi, γi is the curvilinear polygon that

forms the boundary of Pi, ℓ(γi) is its length, and ∠i is the sum of its interior

angles. We must therefore sum the contributions of each of the three terms on

the right-hand side of Eq. 13.18 over all the polygons Pi in the triangulation.

First,
∑

i ∠i is the sum of all the internal angles of all the polygons. At

each vertex, several polygons meet, but the sum of the angles at the vertex is

obviously 2π, so ∑

i

∠i = 2πV, (13.19)

where V is the total number of vertices.

Next,
∑

i

(ni − 2)π =

(∑

i

ni

)
π − 2πF = 2πE − 2πF, (13.20)

where F is the total number of polygons and E the total number of edges, since

in the sum
∑

i ni each edge is counted twice (as each edge is an edge of exactly

two polygons).

We now claim that ∑

i

∫ ℓ(γi)

0

κgds = 0. (13.21)

Indeed, note that in the sum in Eq. 13.21, we integrate twice along each

edge, once in each direction (see the diagram above). By Proposition 7.3.2,

the geodesic curvature κg = γ̈ · (N× γ̇) of a curve γ changes sign when we tra-

verse γ in the opposite direction (for this amounts to changing the sign of the
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curve parameter which changes the sign of γ̇ but leaves γ̈ unchanged). Hence,

the two integrals in (13.21) along any given edge cancel out. The various con-

tributions to the sum in Eq. 13.21 therefore cancel out in pairs, thus proving

Eq. 13.21.

Finally, the integral of the Gaussian curvature K over the whole surface is

the sum of its integrals over each polygon. This is because the polygons overlap,

if at all, in an edge or a vertex, so that the overlap has zero area and thus does

not contribute to the integral. Hence, putting Eqs. 13.18–13.21 together gives
∫

S

KdA =
∑

i

∫

Ri

KdAσi

=
∑

i

∠i −
∑

i

(ni − 2)π +
∑

i

∫ ℓ(γi)

0

κg ds

=2πV − (2πE − 2πF ) + 0

= 2πχ,

proving Theorem 13.4.5.

To see why Theorem 13.4.5 is so remarkable, let us apply it to the unit

sphere S2. Then, χ = 2 and so we get
∫

S2

KdA = 4π. (13.22)

Of course, this result is not remarkable at all because K = 1 so the left-hand

side of Eq. 13.22 is just the area of S2. But now suppose that we deform S2,

i.e., we think of S2 as being a rubber sheet and we pull and stretch it in any

way we like, but without tearing, producing a new surface S:

The Gaussian curvatureK of S will not be constant and the direct computa-

tion of the integral
∫
S
KdA will be difficult. But if we start with a triangulation

of S2, then after deformation we shall have a triangulation of S with the same
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number of vertices, edges and polygons as the original triangulation. It follows

that the Euler number of S is the same as that of S2, i.e., 2, so by Theo-

rem 13.4.5,
∫
S
KdA = 4π. (More generally, this discussion shows that any two

diffeomorphic compact surfaces have the same Euler number.)

We complete the picture by determining the Euler numbers of all the com-

pact surfaces, which were described in Section 5.4.

Theorem 13.4.7

The Euler number of the compact surface Tg of genus g is 2− 2g.

Proof

The formula is correct when g = 0, since we know that χ = 2 for a sphere. We

now prove it for the torus T1. To find a triangulation of the torus, we use the

fact that it can be obtained from a square in the plane by gluing opposite edges:

glue

glue
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We subdivide the square into triangles as shown:

This leads to a triangulation of T1 with V = 9, E = 27 and F = 18. One must

count carefully: for example, the four circled vertices of the square correspond

to a single vertex on the torus. Note also that not just any subdivision of the

square into triangles is acceptable. For example, the subdivision

is not acceptable, since after gluing, the two shaded triangles intersect in two

vertices, which is not allowed:
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But the finer subdivision above does work, and gives

χ = 9− 27 + 18 = 0 = 2− 2× 1,

proving the theorem when g = 1.

We now complete the proof by induction on g, using the fact that Tg+1 can

be obtained from Tg by ‘gluing on’ a copy of T1:

glueT9

T1

Suppose we carry out the gluing by removing a curvilinear n-gon from Tg and

T1 and gluing corresponding edges (having fixed suitable triangulations of Tg

and T1). If V
′, E′ and F ′ are the numbers of vertices, edges and polygons in

the triangulation of Tg, and V ′′, E′′ and F ′′ are those for T1, the numbers V ,

E and F for Tg+1 are given by

V =V ′ − n+ V ′′ − n+ n = V ′ + V ′′ − n,

E =E′ − n+ E′′ − n+ n = E′ + E′′ − n,

F =F ′ − 1 + F ′′ − 1 = F ′ + F ′′ − 2.

Indeed, V is the number V ′ of vertices in Tg plus the number V ′′ in T1, except

that the n vertices of the polygon along which T1 and Tg are glued have been

counted twice, so V = V ′ + V ′′ − n; a similar argument applies to the edges;

and F is as stated because the polygon along which T1 and Tg are glued is not

part of the triangulation of Tg+1. Hence,

χ(Tg+1) =V − E + F

=(V ′ + V ′′ − n)− (E′ + E′′ − n) + (F ′ + F ′′ − 2)

=V ′ − E′ + F ′ + V ′′ − E′′ + F ′′ − 2

=χ(Tg) + χ(T1)− 2

=2− 2g + 0− 2 (by the induction hypothesis)

= 2− 2(g + 1),

proving the result for genus g + 1.
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Corollary 13.4.8

We have ∫

T g

KdA = 4π(1− g).

Proof

Just combine Theorems 13.4.5 and 13.4.7.

EXERCISES

13.4.1 Show that, if a compact surface S is diffeomorphic to the torus T1,

then ∫

S

K dA = 0

(cf. Exercise 8.1.8). Can such a surface S have K = 0 everywhere?

13.4.2 Suppose that S is a compact surface whose Gaussian curvature K is

> 0 everywhere. Show that S is diffeomorphic to a sphere. Is the

converse of this statement true?

13.5 Map colouring

In the remainder of this book we shall give some applications of the Gauss–

Bonnet theorem. The first is actually an application of Euler’s formula

V − E + F = χ = 2− 2g

relating the number of vertices V , edges E and polygons F in any triangulation

of a compact surface of Euler number χ and genus g. This is, of course, an

immediate consequence of Corollary 13.4.6 and Theorem 13.4.7.

The application we have in mind is the problem of map colouring. In this

context, a triangulation of S is called a ‘map’ (in the usual geographical sense)

and the polygons are called ‘countries’. Two countries are ‘neighbours’ if they

have a common edge (not just a common vertex). If n is a positive integer, an

n-colouring of such a map is an assignment of one of n different colours to each

country in such a way that neighbouring countries never have the same colour.
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Map Co l o u r i n g P r o b l e m For a given compact surface S, what is the smallest

positive integer n such that every map on S can be n-coloured?

This smallest integer n is called the chromatic number of S. (It is not obvious

that this number even exists – why should we not be able to draw maps on a

given surface requiring an arbitrarily large number of colours? – but it does, as

we shall show later in this section.) It is clear that diffeomorphic surfaces have

the same chromatic number.

The problem originated in a letter sent by the English mathematician

Augustus de Morgan to the Irish mathematician Sir William Rowan Hamilton

(the inventor of quaternions) on 23 October 1852. As De Morgan wrote,“A stu-

dent of mine asked me today to give him a reason for a fact which I did not

know was a fact – and do not yet. He says that if a figure be anyhow divided

and the compartments differently coloured so that figures with any portion of

common boundary line are differently coloured – four colours may be wanted,

but not more ...”

The problem formulated by De Morgan, or his student (Peter Guthrie), was

actually in the plane – the map was supposed to have finitely many countries

and to occupy a certain bounded region. Of course, the plane is not a com-

pact surface, but the problem described by De Morgan is equivalent to the

map colouring problem for a sphere. This is easily seen using the stereographic

projection in Example 6.3.5 (we need only consider S2 as any two spheres are

diffeomorphic). Suppose that we have a map on S2, and assume that the north

pole is not on an edge – this can always be achieved by a suitable rotation of

S2. Then stereographic projection takes the map on S2 to one on the plane

and vice versa; note that the country on S2 containing the north pole goes to

the (unbounded) exterior region of the map on the plane, which therefore has

one fewer country than that on S2.
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Thus, De Morgan (or Guthrie) had made

The Four Colour Conjecture The chromatic number of a sphere is 4.

For surfaces other than a sphere, the corresponding result was conjectured

by Percy Heawood in 1890. For a compact surface of Euler number χ, let

N(χ) =
1

2
(7 +

√
49− 24χ).

Note that, since the possible values of χ are 2, 0,−2,−4, . . ., N(χ) is a positive

real number. Let h(χ) be the largest integer ≤ N(χ).

Heawood’s Conjecture The chromatic number of a compact surface of Euler

number χ ≤ 0 is h(χ).

Since h(2) = 4 the formula also gives the conjectured answer for a sphere.

The proofs of these conjectures turned out to be very difficult and, rather

surprisingly, the problem for the ‘simplest’ surface, the sphere, is more diffi-

cult than that for higher genus surfaces: Heawood’s conjecture was proved in

1967 and the four colour conjecture 10 years later (the latter proof requires

substantial computer assistance).

Euler’s formula leads to a proof of ‘half’ of Heawood’s conjecture:

Theorem 13.5.1

Any compact surface of Euler number χ ≤ 0 can be h(χ)-coloured.

Proof

We can assume that at least three edges meet at each vertex, since a vertex

at which only two edges meet can be removed without affecting the colouring.

We can also assume that the number of countries F is greater than N(χ), for

if F ≤ N(χ) then F ≤ h(χ) and then h(χ) colours obviously suffice.
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reinstate edge

?

colour new map

original map

C

remove edge

To prove the theorem, it is enough to prove that at least one country C

has ≤ h(χ)− 1 edges. Indeed, if we assume this we can prove the theorem by

induction on F . Let us remove an edge from C, thus merging C with one of

its neighbours. This creates a new map with F − 1 countries. By the induc-

tive assumption, this map can be h(χ)-coloured. Choose such a colouring and

then reinstate C by replacing the removed edge. Since C has at most h(χ) − 1

neighbours, we can colour C with a colour different from any of those used for

its neighbours. This gives an h(χ)-colouring of our original map and completes

the induction.

We prove the assertion by contradiction. Suppose then that every country

has ≥ h(χ) edges. Since every edge is an edge of exactly two countries, we have

E ≥
1

2
h(χ)F, (13.23)

and since at least three edges meet at each vertex,

2E ≥ 3V.

From this last inequality,

E ≤ 3(E − V ) = 3(F − χ). (13.24)

From (13.23) and (13.24),

h(χ) ≤ 6
(
1−

χ

F

)
.
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Since F > N(χ) and χ ≤ 0, we get

h(χ) ≤ 6

(
1−

χ

N(χ)

)
. (13.25)

But N(χ) is a root of the quadratic equation

N2 − 7N + 6χ = 0,

from which we deduce that

6

(
1−

χ

N(χ)

)
= N(χ)− 1.

Thus, the inequality (13.25) is impossible.

This contradiction completes the proof of Theorem 13.5.1.

To complete the proof of Heawood’s conjecture, we would have to exhibit,

for every χ ≤ 0, a map on a surface of Euler number χ that cannot be coloured

with fewer than h(χ) colours. Heawood apparently thought that this would be

straightforward, but in fact it is the most difficult part of the proof. He did,

however, give such a map on the torus, and so proved

Theorem 13.5.2

The chromatic number of a torus is 7.

Proof

Consider the map on the torus shown below, in which we use the description

of the torus as a rectangle with opposite edges glued together (see the proof of

Theorem 13.4.7):

2 3 4 5 6 7 1

2

1

7

1 2 3 4 5 6 7

1

Each of the seven countries of this map has all the others as neighbours, so it

obviously requires seven colours.
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The proof of Theorem 13.5.1 breaks down if χ = 2, and so does not help

with the proof of the four colour conjecture. However, the same method can be

used to prove

Proposition 13.5.3 (Five Neighbours Theorem)

Every map on a sphere has at least one country with five or fewer neighbours.

See Exercise 13.5.1. If we take a map on a sphere, we can remove and

then reinstate a country C which has no more than five neighbours, as in the

proof of Theorem13.4.1, but then we need at least six colours to be available

to be sure of being able to colour C differently from its neighbours. Thus,

Proposition 13.5.3 implies the following theorem.

Corollary 13.5.4 (Six Colour Theorem)

Every map on a sphere can be six-coloured.

EXERCISES

13.5.1 Prove Proposition 13.5.3.

13.5.2 Show that every triangulation of a compact surface of Euler number

χ by curvilinear triangles has at least N(χ) vertices.

13.6 Holonomy and Gaussian curvature

Theorem 13.1.2 allows us to establish a connection between parallel transport

along curves on a surface (see Section 7.4) and the Gaussian curvature of the

surface. For this, we need

Proposition 13.6.1

Let γ be a unit-speed curve on a surface patch σ and let v be a non-zero

parallel vector field along γ. Let ϕ be the oriented angle ̂̇γv from γ̇ to v. Then,

the geodesic curvature of γ is

κg = −
dϕ

ds
.
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Note that, if v were replaced by another non-zero parallel vector field w,

then since the angle between v and w is constant by Proposition 7.4.9(ii), ϕ

would change by the addition of a constant and dϕ/ds would be unchanged.

Proof

By Proposition 7.4.9(ii), the length of v is constant so by multiplying by a

non-zero constant we can assume that ‖ v ‖= 1. Then,

v = cosϕ t+ sinϕ t1,

where t = γ̇ and t1 = N× t, N being the unit normal of σ. Since v is parallel

along γ, v̇ is parallel to N (Proposition 7.4.3). Hence,

0 = t · v̇ = t · ((cosϕ ṫ+ sinϕ ṫ1) + ϕ̇(− sinϕ t+ cosϕ t1)) = sinϕ(t · ṫ1 − ϕ̇),

(13.26)

since t · ṫ = t · t1 = 0. Similarly, t1 · v̇ = 0 leads to

0 = cosϕ(t1 · ṫ+ ϕ̇). (13.27)

Now,

κg = γ̈ · (N× γ̇) = ṫ · (N× t) = ṫ · t1,

and since t · t1 = 0,

t · ṫ1 = −ṫ · t1 = −κg.

Hence, Eqs. 13.26 and 13.27 become

(ϕ̇+ κg) sinϕ = 0 = (ϕ̇+ κg) cosϕ,

and hence the result. Note that we really need both of these equations, since

we could have cosϕ = 0 or sinϕ = 0 (but not both, of course).

Suppose now that γ is a (unit-speed) closed curve. On going once around

γ, ϕ increases by ∫ ℓ(γ)

0

dϕ

ds
ds = −

∫ ℓ(γ)

0

κg ds,

where ℓ(γ) is the length of γ. If γ is actually a simple closed curve, the tan-

gent vector γ̇ also rotates by 2π on going once around γ by the Umlaufsatz

(Section 13.1). Hence, we obtain
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Proposition 13.6.2

Let γ be a positively-oriented unit-speed simple closed curve on a surface σ,

let κg be the geodesic curvature of γ, and let v be a non-zero parallel vector

field along γ. Then, on going once around γ, v rotates through an angle

2π −

∫ ℓ(γ)

0

κg ds. (13.28)

Definition 13.6.3

If γ is a unit-speed closed curve on a surface S, the angle in Proposition 13.6.2

is called the holonomy around γ, and is denoted by hγ .

The result we have been working towards is

Theorem 13.6.4

Let γ be a positively-oriented simple closed curve on a surface patch σ, let hγ

be the holonomy around γ, and let K be the Gaussian curvature of σ. Then,

hγ =

∫

int(γ)

K dAσ .

Proof

Just combine Theorem 13.1.2, Proposition 13.6.2 and Definition 13.6.3.

We can turn this theorem into a way of finding the Gaussian curvature at

a point p of a surface S: if γ is a small positively-oriented simple closed curve

on the surface containing p in its interior, the Gaussian curvature of S at p

will be approximately
hγ

Area(int(γ))
.

Using this idea, we can prove

Proposition 13.6.5

Suppose that a surface S has the property that, for any two points p,q ∈ S,

the parallel transport Πpq
γ is independent of the curve γ joining p and q. Then,

S is flat.
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Proof

Suppose that parallel transport is independent of the curve joining any two

given points. Then the holonomy around any closed curve on S must be zero.

Indeed, if γ is such a curve, and if p is any point on γ, then the parallel

transport Πpp
γ from p to p along γ must be the same as that from p to p

along the constant curve at p; but the latter is obviously the identity map.

By Theorem 13.6.4, the integral of the Gaussian curvature K over the interior

of any simple closed curve γ on S must be zero. This implies that K = 0

everywhere: if K 
= 0 at some point p ∈ S, say K(p) > 0, then K > 0 at all

points in some open subset O of S containing p; but then the integral ofK over

the interior of a simple closed curve γ in O would be > 0, a contradiction.

The converse of this proposition is not true without further assumptions (see

Exercise 13.6.2). However, it is true if we assume that the surface S is simply-

connected: this means that, for any two points p,q ∈ S, and any two curves

γ and γ̃ joining p and q, there is a family of curves γτ joining p and q such

that γ0 = γ and γ1 = γ̃ (see Section 9.4). For example, spheres are simply-

connected but circular cylinders are not. We shall not prove these assertions

as a proper discussion of simple-connectedness would take us too far into the

realm of topology.

EXERCISES

13.6.1 Let σ(θ, ϕ) be the parametrization of the torus in Exercise 4.2.5.

Show that the holonomy around a circle θ = θ0 is 2π(1 − sin θ0).

Why is it obvious that the holonomy around a circle ϕ = constant is

2π? Note that these circles are not simple closed curves on the torus.

13.6.2 Calculate the holonomy around the parameter circle v = 1 on the

cone σ(u, v) = (v cosu, v sinu, v), and conclude that the converse of

Proposition 13.6.5 is false.

13.7 Singularities of vector 45678

Suppose that S is a surface and that V is a smooth tangent vector field on S.

This means that, if σ : U → R3 is a patch of S and (u, v) are coordinates on

U , then

V = α(u, v)σu + β(u, v)σv,
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where α and β are smooth functions on U . It is easy to see that this smoothness

condition is independent of the choice of patch σ (see Exercise 13.7.2).

Definition 13.7.1

If V is a smooth tangent vector field on a surface S, a point p ∈ S at which

V = 0 is called a stationary point of V.

The reason for this terminology is as follows. We saw in the proof of Propo-

sition 8.4.3 that, if p ∈ S, there is a unique curve γ(t) on S such that γ̇ = V

and γ(0) = p; γ is called an integral curve of V. We can think of γ as the path

followed by a particle of some fluid that is flowing over the surface. If V = 0

at p, the velocity γ̇ of the flow is zero at p, so the fluid is stationary there.

We are going to prove a theorem which says that the number of stationary

points of any smooth tangent vector field on a compact surface S, counted

with the appropriate multiplicity, is equal to the Euler number of S. To define

this multiplicity, let p be a stationary point of V contained in a surface patch

σ : U → R3 of S, say, with σ(u0, v0) = p. Assume that p is the only stationary

point of V in the region σ(U) of S. Let ξ be a nowhere-vanishing smooth

tangent vector field on σ(U) (e.g. we may choose ξ = σu or σv).

Definition 13.7.2

With the above notation and assumption, the multiplicity of the stationary

point p of the tangent vector field V is

µ(p) =
1

2π

∫ ℓ(γ)

0

dψ

ds
ds,

where γ(s) is any positively-oriented unit-speed simple closed curve of length

ℓ(γ) in σ(U) with p in its interior, and ψ(s) is the oriented angle ξ̂V between

ξ and V at the point γ(s).

It is clear that µ(p) is an integer, and an argument similar to our heuristic

proof of Hopf’s Umlaufsatz in Section 13.1 shows that µ(p) does not depend on

the choice of simple closed curve γ. It is also easy to see that it is independent of

the choice of ‘reference’ vector field ξ (see Exercise 13.7.3). Finally, an argument

similar to that used to prove Proposition 2.2.1 shows that the angle ψ(s), which

is only determined up to adding an integer multiple of 2π, can be chosen to be

a smooth function of s.
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Example 13.7.3

The following smooth tangent vector fields in the plane have stationary points

of the indicated multiplicity at the origin (we have shown the integral curves

of the vector fields for the sake of clarity):

(i) V(x, y) = (x, y); µ = +1.

(ii) V(x, y) = (−x,−y); µ = +1

(iii) V(x, y) = (y,−x); µ = +1
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(iv) V(x, y) = (x,−y); µ = −1

The stationary point in examples (i), (ii), (iii) and (iv) is called a source, sink,

vortex and bifurcation, respectively.

Let us verify the multiplicity in case (iv), for example. Take the ‘reference’

tangent vector field to be the constant vector field ξ = (1, 0). Then, the angle

ψ is given by

(cosψ, sinψ) =
V

‖ V ‖
=

(
x√

x2 + y2
,−

y√
x2 + y2

)
.

Taking γ(s) = (cos s, sin s) to be the unit circle, at γ(s) the angle ψ satisfies

(cosψ, sinψ) = (cos s,− sin s),

so ψ = 2π − s. Hence,

µ(0, 0) =
1

2π

∫ 2π

0

d

ds
(2π − s) ds = −1.

Theorem 13.7.4

Let V be a smooth tangent vector field on a compact surface S which has only

finitely many stationary points, say p1,p2, . . . ,pn. Then,

n∑

i=1

µ(pi) = χ,

the Euler number of S.
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Proof

Let γi be a positively-oriented unit-speed simple closed curve contained in a

patch σi of S with pi in the interior of γi. Assume that the γi are chosen so

small that their interiors are disjoint. Choose a triangulation of the part S′ of S

outside γ1,γ2, . . . ,γn by curvilinear polygons Γj . Note that the edges of some

of these curvilinear polygons will be segments of the curves γi.

°1

°3

°2

p1

p3

Γj

p2

Note also that, when these polygons are positively-oriented, the induced

orientation of the γi is opposite to their positive orientation (see the diagram

above, in which the arrows indicate the sense of positive orientation).

We can regard the curvilinear polygons in S ′, together with the simple closed

curves γi and their interiors, as a triangulation of S, so by Theorem 13.4.5,
∫

S′

K dA+

n∑

i=1

∫

int(γi)

K dA = 2πχ, (13.29)

where χ is the Euler number of S. On S ′, we choose an orthonormal basis

{e′, e′′} of the tangent plane of S at each point so that e′ is parallel to the

tangent vector field V. Arguing as in the proof of Theorem 13.1.2, we see that
∫

S′

K dA =
∑

j

∫ ℓ(Γj)

0

e′ · ė′′ ds, (13.30)

where s is arc-length on Γj and ℓ(Γj) is its length. Any common edge of two

of the curvilinear polygons Γj is traversed once in each direction and so their

contributions to the sum in Eq. 13.30 cancel out. What remains is the integral

along the segments of the curves γi that are part of the polygons Γj . In view

of the remark about orientations above, we get
∫

S′

K dA = −

n∑

i=1

∫ ℓ(γi)

0

e′ · ė′′ ds, (13.31)

where s is arc-length along γi and ℓ(γi) is its length.
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Now choose an orthonormal basis {f′, f′′} of the tangent plane of S on each

patch σi. By the proof of Theorem 13.1.2,
∫

int(γi)

K dA =

∫ ℓ(γi)

0

f′ · ḟ
′′
ds. (13.32)

Combining Eqs. 13.29, 13.31 and 13.32, we get
n∑

i=1

∫ ℓ(γi)

0

(f′ · ḟ
′′
− e′ · ė′′) ds = 2πχ. (13.33)

But, from the proof of Theorem 13.1.2,

e′ · ė′′ = θ̇ − κg, f′ · ḟ
′′
= ϕ̇− κg,

where κg is the geodesic curvature of γi and θ and ϕ are the oriented angles

ê′γ̇i and f̂′γ̇i, respectively. Then, ψ = ϕ− θ is the oriented angle f̂′e′, i.e., the

oriented angle f̂
′
V between V and the ‘reference’ tangent vector field f

′ on σi.

So the left-hand side of Eq. 13.33 is

n∑

i=1

∫ ℓ(γi)

0

dψ

ds
ds = 2π

n∑

i=1

µ(pi),

as we want.

We now give some simple examples of vector fields on surfaces (we show

their integral curves for clarity).

Example 13.7.5

A vector field on the sphere with one source and one sink: χ = 2
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Example 13.7.6

A vector field on the torus with no stationary points: χ = 0

Example 13.7.7

A vector field on the double torus T2 with two bifurcations: χ = −2

EXERCISES

13.7.1 Let k be a non-zero integer and let V(x, y) = (α, β) be the vector

field on the plane given by

α+ iβ =

{

(x + iy)k if k > 0,

(x − iy)−k if k < 0.

Show that the origin is a stationary point of V of multiplicity k.

13.7.2 Show that the definition of a smooth tangent vector field is indepen-

dent of the choice of surface patch. Show also that a tangent vector

field V on S is smooth if and only if, for any surface patch σ of S,

the three components of V at the point σ(u, v) are smooth functions

of (u, v).
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13.7.3 Show that the Definition 13.7.2 of the multiplicity of a stationary

point of a tangent vector field V is independent of the‘reference’

vector field ξ .

13.8 Critical points

If f(u, v) is a smooth function defined on an open subset U of R2, we say that a

point (u0, v0) is a critical point of f if 9:/9u and 9:/9v both vanish at (u0, v0).

If now F : S → R is a smooth function on a surface S (see Exercise 4.3.1), and

if σ : U → R3 is a surface patch of S, then f = F ◦ σ is a smooth function on

the open subset U of R2. This suggests

Definition 13.8.1

Let S be a surface and F : S → R a smooth function on S. A point p ∈ S is a

critical point of F if there is a surface patch σ of S, with p = σ(u0, v0), say,

such that f = F ◦ σ has a critical point at (u0, v0).

It is easy to check directly that the definition of a critical point is inde-

pendent of the choice of patch σ (see Exercise 13.8.1), but this will follow

immediately from another characterization of critical points that we shall now

give and which is independent of any arbitrary choices.

Proposition 13.8.2

If F is a smooth function on a surface S, there is a unique smooth tangent

vector field ∇SF on S such that, if p ∈ S and γ(t) is a curve in S which passes

through p when t = t0, we have

(∇SF ) · γ̇(t0) =
d

dt

∣

∣

∣

∣

t=t0

F (γ(t)). (13.34)

Moreover, p is a critical point of F if and only if ∇SF = 0 at p.

Proof

We showed in Exercise 4.4.3 that if F is the restriction to S of a smooth

function F : R3 → R, then Eq. 13.34 is satisfied if we take ∇SF to be the

orthogonal projection of the gradient ∇F of F onto the tangent plane of S.

But if F : S → R is not given to us as the restriction of a smooth function
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defined on R3, we must proceed differently, since ∇F only makes sense if F is

defined on R3, or at least on an open subset of R3.

We observe first that the tangent vector field ∇SF is obviously unique, if it

exists. Indeed, every tangent vector to S at p is of the form γ̇(t0) for some t0
and some curve γ on S with γ(t0) = p, so any two choices of ∇SF at p would

differ by a vector perpendicular to every tangent vector to S at p, which must

be zero.

To see that ∇SF exists, choose a surface patch σ(u, v) for S with

σ(u0, v0) = p, say, and let f = F ◦ σ. Let {e′, e′′} be the basis of the

tangent plane of S at p such that

e′ · σu = e′′ · σv = 1, e′ · σv = e′′ · σu = 0. (13.35)

Explicitly,

e′ =
Gσu − Fσv

EG− F 2
, e′′ =

Eσv − Fσu

EG− F 2
, (13.36)

where Edu2 + 2Fdudv +Gdv2 is the first fundamental form of σ. We take

∇SF = fue
′ + fve

′′, (13.37)

where the derivatives are evaluated at (u0, v0). If γ is as in the statement of

the proposition, say γ(t) = σ(u(t), v(t)), then (with d/dt denoted by a dot),

(∇SF ) · γ̇(0) = (fue
′ + fve

′′) · (u̇σu + v̇σv)

= fuu̇+ fvv̇ (by Eq. 13.35)

= ḟ ,

and the derivatives with respect to t are being evaluated at t = t0. It is clear

from Eqs. 13.36 and 13.37 that ∇SF is smooth and that p is a critical point

of F if and only if ∇SF = 0 at p.

Since ∇SF is a smooth tangent vector field on S, we can apply Theo-

rem 13.7.4 to it. To do so, we must compute the multiplicity of the stationary

points of ∇SF . For this, we shall make an additional assumption about F ,

contained in the following.

Definition 13.8.3

A critical point p of a smooth function F on a surface S is said to be non-

degenerate if, whenever σ(u, v) is a patch of S with p = σ(u0, v0), say, the

matrix

H =

(
∂2f
∂u2

∂2f
∂u∂v

∂2f
∂u∂v

∂2f
∂v2

)
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is invertible, where f = F ◦ σ and the derivatives are evaluated at (u0, v0).

In this case, the point p is called a local maximum, a saddle point or a local

minimum if H has 2, 1 or 0 negative eigenvalues, respectively.

It is not difficult to show that this definition is sensible, i.e., independent

of the choice of patch σ (see Exercise 13.8.1). Note that the matrix H is real

and symmetric, so it always has two real eigenvalues (not necessarily distinct)

– see Appendix 0.

Proposition 13.8.4

Let p be a critical point of a smooth function F on a surface S. Then, the

multiplicity of p as a stationary point of ∇SF is

µ(p) =

{

1 if p is a local maximum or a local minimum,

−1 if p is a saddle point.

Example 13.8.5

The function on the plane given by F (u, v) = −u2− v2 (resp. u2 − v2, u2 + v2)

has a local maximum (respectively saddle point, local minimum) at the origin.

We shall not give a complete proof of Proposition 13.8.4 here. But the

following argument should convince the reader of its truth. Let us assume that

(u0, v0) = (0, 0) for simplicity, and write the matrix in Definition 13.8.3 at

u = v = 0 as

H =

(
λ µ

µ ν

)
.

Then, Taylor’s theorem tells us that

f(u, v) =
1

2
(λu2 + 2µuv + νv2) + r(u, v),

where r(u, v)/(u2 + v2) tends to zero as u and v tend to zero. It is plausible,

then, that the behaviour of ∇SF near p is the same as that of ∇S F̃ , where

F̃ (σ(u, v)) =
1

2
(λu2 + 2µuv + νv2).

In particular, F and F̃ should have the same type of critical point at p.

But the multiplicity of p as a critical point of F̃ is easy to compute. To do

so, note first that there is an orthogonal matrix P such that

P t

(
λ µ

µ ν

)
P =

(
ǫ1 0

0 ǫ2

)
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is a diagonal matrix. This means that, by applying an isometry in the uv-plane

(i.e., a reparametrization of σ), we can assume that

F̃ (σ(u, v)) =
1

2
(ǫ1u

2 + ǫ2v
2).

We can also assume that the patch σ is conformal, so that angles measured in

the uv-plane are the same as those measured on the surface (see Section 6.3).

Taking our ‘reference’ tangent vector field to be σu, the angle ψ between

∇S F̃ and σu is given by

(cosψ, sinψ) =
(ǫ1u, ǫ2v)√
ǫ21u

2 + ǫ22v
2
.

We take the simple closed curve in the uv-plane given by the ellipse

ǫ21u
2 + ǫ22v

2 = r2,

where r is a small positive number, which can be parametrized by

u =
r

|ǫ1|
cos t, v

r

|ǫ2|
sin t.

Hence,

cosψ =
ǫ1
|ǫ1|

cos t, sinψ =
ǫ2
|ǫ2|

sin t,

and so

ψ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t if ǫ1 > 0 and ǫ2 > 0,

2π − t if ǫ1 > 0 and ǫ2 < 0,

π − t if ǫ1 < 0 and ǫ2 > 0,

π + t if ǫ1 < 0 and ǫ2 < 0.

This gives the multiplicity of p as a stationary point of ∇S F̃ as

1

2π

∫ 2π

0

dψ

dt
dt =

{
1 if ǫ1 and ǫ2 have the same sign,

−1 otherwise,

in accordance with Proposition 13.8.4.

If we accept this heuristic argument, we can combine Theorem 13.7.4 and

Proposition 13.8.4 to give

Theorem 13.8.6

Let F : S → R be a smooth function on a compact surface S with only finitely

many critical points, all non-degenerate. Then,
(
number of local

maxima of F

)
−

(
number of saddle

points of F

)
+

(
number of local

minima of F

)
= χ,

the Euler number of S.
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Example 13.8.7

If we take the surface Tg of genus g described in Section 5.4 and stand it upright

on the xy-plane, the height above the plane is a smooth function F on Tg. The

critical points of F are as shown in the following diagram, and they are all

non-degenerate (cf. Exercise 13.8.3).

P

Q1

Q2

Q3

Q4

Q5

Q6

R

There is a unique local minimum P , 2g saddle points Q1, Q2, . . . , Q2g, and a

unique local maximum R. Hence, Theorem 13.8.6 gives the Euler number of Tg

as

1− 2g + 1 = 2− 2g,

in accordance with Theorem 13.4.7.
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EXERCISES

13.8.1 Show directly that the definitions of a critical point (13.8.1), and

whether it is non-degenerate (13.8.2), are independent of the choice

of surface patch. Show that the classification of non-degenerate crit-

ical points into local maxima, local minima and saddle points is also

independent of this choice.

13.8.2 For which of the following functions on the plane is the origin a non-

degenerate critical point? In the non-degenerate case(s), classify the

origin as a local maximum, local minimum or saddle point.

(i) x2 − 2xy + 4y2.

(ii) x2 + 4xy.

(iii) x3 − 3xy2.

13.8.3 Let S be the torus obtained by rotating the circle (x−2)2+z2 = 1 in

the xz-plane around the z-axis, and let F : S → R be the distance

from the plane x = −3. Show that F has four critical points, all

non-degenerate, and classify them as local maxima, saddle points or

local minima. (See Exercise 4.2.5 for a parametrization of S.)



Appendix0
Inner product spaces and self-adjoint

linear maps

Throughout this appendix, V denotes a vector space of finite dimension n

over R. Proofs of all the results in this appendix can be found in standard

books on linear algebra.

A map V × V → R, denoted (v,w) ;→ 〈v,w〉 , is called a bilinear form if,

for all λ1, λ2 ∈ R, v1,v2,w ∈ V , we have

〈λ1v1 + λ2v2,w〉 = λ1〈w,v1〉 + λ2〈w,v2〉
〈w, λ1v1 + λ2v2〉 = λ1〈w,v1〉 + λ2〈w,v2〉 .

Thus, 〈v,w〉 is a linear function of v for each fixed w, and a linear function of

w for each fixed v.

If {v1, . . . ,vn} is a basis of V , any bilinear form 〈 , 〉 on V is determined

by the n× n matrix whose (i, j)-entry is 〈vi,vj〉 for i, j = 1, . . . , n. For, if

v =

n
∑

i=1

λivi, w =

n
∑

i=1

μivi

are any two vectors in V , then

〈v,w〉 =

n
∑

i,j=1

λiμj〈vi,vj〉.

A bilinear form 〈 , 〉 is called symmetric if

〈v,w〉 = 〈w,v〉 for all v,w ∈ V .

Equivalently, the matrix of 〈 , 〉 with respect to any basis of V is symmetric.

379
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Any symmetric bilinear form = , > is uniquely determined by its associated

quadratic form q : V → R is given by

q(v) = =v,v>.

Indeed, for any v,w ∈ V ,

=v,w> =
1

2
(q(v+w)− q(v)− q(w)).

An inner product on V is a symmetric bilinear form = , > on V such that

=v,v> > 0 for all non-zero v ∈ V .

The length of a vector v is then defined to be ‖ v ‖= =v,v>1/2, and two vectors

v,w are said to be perpendicular, or orthogonal, if =v,w> = 0.

Proposition A.0.1

Let = , > be an inner product on V . Then, V has an orthonormal basis, i.e., a

basis {v1, . . . ,vn} such that

=vi,vj> =

?
1 if i=j

0 if i �= j.

If V has an inner product = , >, a linear map L : V → V is called self-adjoint

if
=L(v),w> = =v, L(w)> for all v,w ∈ V .

Equivalently, the bilinear form

==v,w>> = =L(v),w>

should be symmetric.

Proposition A.0.2

Let L : V → V be a self-adjoint linear map. Then, the matrix of L with respect

to any orthonormal basis of V is symmetric.

If L : V → V is a linear map, a real number @ is called an eigenvalue of

L if L(v) = @v for some non-zero vector v ∈ V . In that case, v is called an

eigenvector of L corresponding to the eigenvalue @.

Theorem A.0.3

Let L : V → V be a self-adjoint linear map. Then, V has a basis {v1, . . . ,vn}

consisting of eigenvectors of L. Moreover, if vi and vj are eigenvectors corre-

sponding to distinct eigenvalues, then =vi,vj> = 0.
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The last sentence in this theorem implies that the basis of eigenvectors of L

can be chosen to be orthonormal.

This theorem is sometimes referred to by saying that L is diagonalizable:

the matrix of L with respect to the basis {v1, . . . ,vn} in the theorem is the

diagonal matrix
⎛

⎜

⎜

⎜

⎝

A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · An

⎞

⎟

⎟

⎟

⎠

,

where Ai is the eigenvalue corresponding to the eigenvector vi.

In fact, all of the above results have matrix versions. If A is an n×n matrix,

an eigenvalue of A is a real number λ such that

det(A− λI) = 0,

where I denotes the n×n identity matrix. An eigenvector of A with eigenvalue λ

is an n×1 column matrix v such that Av = λv. Theorem A.0.3 is equivalent to

Theorem A.0.4

Let S be a real symmetric n × n matrix. Then, there is an orthogonal matrix

P such that PSP t is a diagonal matrix.

The correspondence is as follows. Let {w1, . . . ,wn} be any orthonormal

basis of V . Then, the linear map L : V → V such that

L(wj) =

n
∑

i=1

sijwi

(where S = (sij)) is self-adjoint. The matrix P = (pij) such that

wj =
n
∑

i=1

pijvi

is orthogonal and PSP t is the diagonal matrix associated to L by Theorem A.0.3.
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Isometries of Euclidean spaces

In this appendix, we collect some basic results about isometries of Rn that are

used in various places in the book.

Definition A.1.1

Let n ≥ 1. An isometry of Rn is a map F : Rn → Rn that preserves the distance

between any two points of Rn:

‖ F (v)− F (w) ‖= ‖ v−w ‖ for all v,w ∈ R
n.

It is obvious that any composite of isometries is an isometry.

For i = 1, . . . , n, let ei = (0, . . . , 0, 1, 0, . . . , 0) (with a 1 in the ith place).

Proposition A.1.2

Let F be an isometry of Rn such that F (0 ) = 0 and F (ei) = ei for i = 1, . . . , n.

Then, F is the identity map.

Proof

If v ∈ Rn, the assumptions on F imply that ‖ v ‖= ‖ F (v) ‖ and ‖ v− ei ‖=
‖ F (v)−ei ‖ for i = 1, . . . , n. These equations in turn imply that v·ei = F (v)·ei
for i = 1, . . . , n, and hence that v = F (v).
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It will be convenient to associate to any vector v = (v1, v2, . . . , vn) ∈ Rn

the column matrix
⎛

⎜

⎜

⎜

⎝

v1
v2
...

vn

⎞

⎟

⎟

⎟

⎠

,

which we also denote by v. The dot product of vectors can then be expressed

in matrix form:
v ·w = vtw.

Recall that an invertible n × n matrix P is said to be orthogonal if P t =

P−1, where P t denotes the transpose of P . An equivalent condition is that the

columns of P are perpendicular unit vectors.

Theorem A.1.3

Let P be an n × n orthogonal matrix and let a ∈ Rn. Then, the map

F : Rn → Rn defined by
F (v) = Pv+ a (A.1.1)

is an isometry of Rn. Moreover, every isometry of Rn is obtained in this way.

In particular, every isometry is a bijective map and the inverse of any isometry

is an isometry.

Proof

If v,w ∈ Rn and F is as defined in Eq. A.1.1 with P orthogonal, we have

‖ F (v)− F (w) ‖2 = (F (v)− F (w)) · (F (v)− F (w))

= (Pv− Pw)t(Pv− Pw)

= (v−w)tP tP (v−w)

= (v−w)t(v−w)

= ‖ v−w ‖2 .

Hence F is an isometry.

Now define
G(v) = P tv− P ta.

Then, G is an isometry (because P t is orthogonal: (P t)t = P = (P−1)−1 =

(P t)−1) and

G ◦ F (v) = P t(Pv+ a)− P ta = v, F ◦G(v) = P (P tv− P ta) + a = v,

and so G is the inverse of F (and F is bijective as it has an inverse).
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For the converse, let F be any isometry of Rn. Let a = F (0 ) and let vi =

F (ei)− a. Then, v1, . . . ,vn are perpendicular unit vectors. Indeed,

‖ vi ‖= ‖ F (ei)− F (0) ‖= ‖ ei − 0 ‖=1,

showing that the vi are unit vectors, and

‖ vi − vj ‖=‖ ei − ej ‖

which implies (using the fact that the vi and the ei are unit vectors) that

vi · vj =ei · ej =0 if i �= j (since ‖ vi − vj ‖2 =‖ vi ‖2 + ‖ vj ‖2 −2vi · vj ,

etc.).

Since v1, . . . ,vn are perpendicular unit vectors, the matrix P whose

columns are v1, . . . ,vn is orthogonal. Moreover,

Pei =vi =F (ei)− a.

Hence, if G denotes the isometry

G(v) =Pv+ a,

we have F (ei) =G(ei) for i =1, . . . , n and F (0) =G(0). Then the isometry

G−1 ◦F fixes 0 and e1, . . . , en, and so is the identity map by Proposition A.1.2.

Hence, F =G.

If P is an orthogonal matrix, the determinant of P must be ±1 since

1 =det(P tP ) =det(P t)det(P ) =det(P )2.

The isometries (A.1.1) for which det(P ) =1 are said to be direct isometries;

those for which det(P ) =−1 are opposite isometries. If

F (v) =Pv+ a, G(v) =Qv+ b

are two isometries, the composite G ◦ F is the isometry

(G ◦ F )(v) =QPv+Qa+ b.

Since det(QP ) = det(Q)det(P ), the composite of two direct or two opposite

isometries is direct, and the composite of a direct and an opposite isometry is

opposite.

We now turn to the geometric description of isometries. The two simplest

types are as follows:

Translations These are the direct isometries Ta given by

Ta(v) =v+ a, (A.1.2)
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where a is a fixed vector in Rn.

O
a

v

T a
(v

)

Reflections If N ∈ Rn is a fixed non-zero vector (which we may as well assume

is a unit vector) and d ∈ R, the set H of vectors v ∈ Rn such that

v ·N = d

is called a hyperplane (a hyperplane in R2 is just a straight line, and a hyper-

plane in R3 is a plane). The reflection RH in H is defined by

RH (v) = v− 2(v ·N− d)N. (A.1.3)

We leave it to the reader to check that RH ◦RH is the identity map, so that RH

is its own inverse, and that the set of points v fixed by RH (i.e., such that

RH (v) = v) is exactly the hyperplane H. If we think of H as a two-way mirror,

RH (v) is the mirror-image of v:

RH(v)
H

v

Proposition A.1.4

Reflections are opposite isometries.
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Proof

In matrix notation, RH(v) = Pv+ a where

P = I − 2NNt

and a = 2dN. Now

P tP = (I − 2NNt)t(I − 2NNt) = (I − 2NNt)(I − 2NNt)

= I − 4NNt + 4NNtNNt = I,

since NtN = N ·N = 1 (I denotes the identity matrix). Thus, P is orthogonal

and RH is an isometry.

Let v1, . . . ,vn−1 be an orthonormal basis of the hyperplane v · N = 0

(i.e., the hyperplane parallel to H passing through the origin). Let Q be

the n × n matrix whose columns consist of the perpendicular unit vectors

v1, . . . ,vn−1,N; then Q is orthogonal. The product PQ is the matrix with

columns v1, . . . ,vn−1,−N, so

PQ = Q

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Taking determinants of both sides and noting that det(Q) �= 0 gives det(P ) =

−1 as required.

It is obvious that any composite of translations is another translation. On

the other hand, it turns out that every isometry is a composite of reflections:

Theorem A.1.5

Every isometry of Rn is a composite of ≤ n+ 1 reflections.

Proof

Let F be any isometry of Rn and let e0 = 0. We construct isometries Gi, for

i = 0, 1, . . . , n, such that

(i) Gi is a composite of ≤ i+ 1 reflections, and

(ii) Gi ◦ F fixes the points e0, e1, . . . , ei.
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Then, Gn ◦F is an isometry that fixes 0 and the points e1, . . . , en, and so is the

identity map by Proposition A.1.2. Moreover, G−1
n is the composite of ≤ n+1

reflections, for if Gn = R1 ◦R2 ◦ · · · ◦Rk, where R1, R2, . . . , Rk are reflections,

then G−1 = Rk ◦ · · · ◦R2 ◦R1.

We prove the existence of the isometries Gi by induction on i. If v0 = e0

let G0 be the identity map. Otherwise, let H0 be the hyperplane perpendicular

to the vector v0 − e0 and passing through the mid-point of the line joining e0

and v0 (i.e., the point 1
2 (e0 + v0)). Then, RH0 takes v0 to e0 and we define

G0 = RH0 .

Suppose now that we have constructed Gi−1 satisfying the required con-

ditions. Then, the isometry Fi = Gi−1 ◦ F fixes the points e0, e1, . . . , ei−1. If

Fi(ei) = ei, define Gi = Gi−1. Otherwise, let Hi be the hyperplane perpendic-

ular to Fi(ei)−ei and passing through the mid-point of the line joining ei and

F (ei). Note that the points ej for j = 0, 1, . . . , i− 1 are all on Hi because

‖ ej − Fi(ei) ‖= ‖ Fi(ej)− Fi(ei) ‖= ‖ ej − ei ‖ .

Hence, the reflection RHi fixes ej for j = 0, 1, . . . , i− 1 and takes Fi(ei) to ei.

Define Gi = RHi ◦Gi−1. This completes the inductive step.

We now specialize to the cases of interest in this book, namely R2 and R3.

We need only consider isometries that fix the origin since a general isometry

can then be obtained by composing with a translation.

If P is a 2× 2 orthogonal matrix, its columns a1 and a2 are perpendicular

unit vectors. If θ is the angle between a1 and the positive x-axis in R2, we then

have

a1 = (cos θ, sin θ), a2 = ±(− sin θ, cos θ).

If

P =

(

cos θ − sin θ

sin θ cos θ

)

,

the corresponding isometry ρθ(v) = Pv is the anticlockwise rotation through

an angle θ about the origin. Since det(P ) = 1, ρθ is a direct isometry, and so

by PropositionA.1.3 must be a composite of two reflections. In fact, ρθ is the

product of the reflections in any two lines that intersect at the origin and make

an angle θ/2 with each other.

The other possibility is

P =

(

cos θ sin θ

sin θ − cos θ

)

.

The corresponding isometry is the reflection in the line passing through the

origin and making an angle θ/2 with the positive x-axis.



Appendix 1 Isometries of Euclidean spaces 389

Thus, every direct isometry of R2 is the composite of a rotation and a

translation, and every opposite isometry is the composite of a reflection and a

translation.

For the R3 case, we recall from Appendix 0 that if P is a square matrix, its

eigenvalues are the roots λ of the equation

det(P − λI) = 0. (A.1.4)

When P is 3× 3, Eq.A.1.4 is a cubic equation for λ which has real coefficients.

It must therefore have at least one real root; we denote the corresponding

eigenvector by N, and we may as well assume that N is a unit vector.

Suppose now that P is orthogonal. Then ‖ PN ‖= ‖ N ‖ and so λ = ±1.

If w is any vector perpendicular to N, Pw is also perpendicular to N since

(switching between vector and matrix notation)

(Pw) ·N = wtP tN = wtP−1N = ±wtN = ±w ·N = 0

(we used the fact that PN = ±N implies P−1N = ±N). So the isometry

F (v) = Pv fixes each point of the line ℓ through the origin parallel to N and

preserves the plane Π through the origin perpendicular to ℓ. Obviously the

restriction F |Π of F to Π is an isometry of Π. By the discussion of the R2 case,

F |Π must be either a rotation or a reflection.

There are now several cases to consider. If λ = 1 and F |Π is a rotation, then

F fixes each point of ℓ and performs a rotation through an angle θ, say, in each

plane perpendicular to ℓ. We denote this isometry by ρℓ,θ and call ℓ the axis of

rotation.

If λ = 1 and F |Π is a reflection in a line ℓ′ in Π, then F is the reflection in

the plane containing ℓ and ℓ′.

If λ = −1 and F |Π is the reflection in a line ℓ′, then F is rotation by π

about the line through the origin perpendicular to ℓ and ℓ′.

Finally, if λ = −1 and F |Π is a rotation, then F is a product of three

reflections. An example of such a ‘reflection-rotation’ is the antipodal map

F (v) = −v.

In particular, we have shown that every direct isometry of R3 is the com-

posite of a rotation about an axis passing through the origin and a translation.

We shall need one more fact relating the isometries of R3 to the cross

product of vectors in R3.

Proposition A.1.6

Let P be a 3× 3 orthogonal matrix. Then, for any v,w ∈ R3,

Pv× Pw = det(P )P (v×w).
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Proof

By Theorem A.1.5 it is enough to prove this when P corresponds to the reflec-

tion in a plane passing through the origin. If N is a unit vector, the reflection

in the plane through the origin perpendicular to N is

R(v) = v− 2(v ·N)N.

In view of Proposition A.1.4, we have to prove that

(v− 2(v ·N)N)× (w− 2(w ·N)N) = −(v×w− 2((v×w) ·N)N)

i.e., v×w+ ((v ·N)w− (w ·N)v)×N = ((v×w) ·N)N. (A.1.5)

Applying the triple-product identity

(a× b)× c = (a · c)b− (a · b)c, (A.1.6)

where a,b, c ∈ R3, to the second term on the left-hand side of Eq.A.1.5, we

are reduced to proving

v×w+ ((v×w)×N)×N = ((v ×w) ·N)N,

and this follows from a second application of the identity (A.1.6).



Appendix2
Möbius transformations

We collect here the main facts about Möbius transformations that we use in

the exercises of Section 6.5 and in Chapter 11.

A Möbius transformation is a map of the form

M(z) =
az + b

cz + d
, (A.2.1)

where a, b, c, and d are complex numbers such that ad− bc �= 0. Note that the

map M is unchanged if a, b, c and d are all multiplied by the same non-zero

complex number.

If c = 0, M(z) is defined for all z ∈ C; if c �= 0 it is defined for all z �= −d/c.

We can avoid this dichotomy by extendingM to a map on the extended complex

plane C∞ = C ∪ {∞}:

M(∞) = ∞ if c = 0,

M(−d/c) = ∞, M(∞) = a/c if c �= 0.

Proposition A.2.1

(i) Every Möbius transformation defines a bijection C∞ → C∞ whose inverse

is a Möbius transformation.

(ii) Any composite of Möbius transformations is a Möbius transformation.

391
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Proof

Let M be as in (A.2.1) and define the Möbius transformation

N(z) =
dz − b

−cz + a
.

If z ∈ C and (if c �= 0) z �= −d/c we have

N(M(z)) =

⎛

⎝

d
(

az+b
cz+d

)

− b

−c
(

az+b
cz+d

)

+ a

⎞

⎠ =
(ad− bc)z

ad− bc
= z.

If c �= 0,

N(M(−d/c)) = N(∞) = −d/c.

Finally,

N(M(∞)) =

{

N(∞) = ∞ if c = 0

N(a/c) = ∞ if c �= 0.

Thus, N(M(z)) = z for all z ∈ CB. Similar computations show that

M(N(z)) = z for all z ∈ CB. This shows that N is the inverse of M ; in

particular, M is bijective.

For (ii), let M be as in (A.2.1) and let

M ′(z) =
a′z + b′

c′z + d′

be another Möbius transformation. Then,

M ′(M(z)) =
a′(az + b) + b′(cz + d)

c′(az + b) + d′(cz + d)
=

(a′a+ b′c)z + a′b+ b′d

(c′a+ d′c)z + c′b+ d′d
.

Since

(a′a+ b′c)(c′b+ d′d)− (a′b+ b′d)(c′a+ d′c) = (a′d′ − b′c′)(ad− bc) �= 0,

M ′ ◦M is a Möbius transformation.

The simplest examples of Möbius transformations are the following:

Translations Ta(z) = z + a, a ∈ C

Complex dilations Da(z) = az, a ∈ C, a �= 0

The map K(z) = 1/z
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If we identify C with R2 in the usual way, the translations Ta coincide with

the translations of R2 considered in Appendix 1. The complex dilationDa is the

composite of the real dilation D|a| and the rotation about the origin through

an angle arg(a).

Proposition A.2.2

Every Möbius transformation is a composite of Möbius transformations of the

above three types.

Proof

Let M be as in (A.2.1). If c = 0 then a �= 0 and

M(z) = az + b = a(z + b/a) = DaTb/a(z).

If c �= 0,

M(z) =
a

c
−

(ad− bc)/c

cz + d
= Ta/cD−(ad−bc)/cK(cz + d)

= Ta/cD−(ad−bc)/cKTdDc(z).

It is clear geometrically that translations and complex dilations take straight

lines to straight lines and circles to circles, and we shall see shortly that the

transformation K takes lines and circles to lines and circles, but may take lines

to circles and circles to lines. Because of this, it is convenient to define a Circle

(capital C!) in C∞ to be either a straight line or a circle in C.

Proposition A.2.3

Every Circle in C∞ can be described by an equation of the form

azz̄ + b̄z + bz̄ + c = 0, (A.2.2)

where a, c ∈ R, b ∈ C. In fact, Eq. A.2.2 represents a straight line if a = 0 and

b �= 0, and a circle if a �= 0 and |b|2 > ac.

Proof

Any straight line in the xy-plane has equation of the form

px+ qy + r = 0,
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where p, q, r ∈ R and p and q are not both zero. Writing z = x + iy, this is of

the form (A.2.2) with a = 0, b = p+ iq, c = 2r. On the other hand, every circle

has equation of the form

(x+ p)2 + (y + q)2 = r2,

where p, q ∈ R and r > 0. This is of the form (A.2.2) with a = 1, b = p + iq

and c = p2 + q2 − r2. Note that |b|2 − ac = r2.

Proposition A.2.4

Every Möbius transformation takes Circles to Circles.

Proof

This is clear geometrically for translations and complex dilations, so in view

of Proposition A.2.2 it is sufficient to prove it for the transformation K. If

w = K(z) then z = 1/w and so if z lies on the Circle (A.2.2) then

a

|w|2
+

b̄

w
+

b

w̄
+ c = 0,

∴ c|w|2 + b̄w̄ + bw + a = 0.

If c = 0, this is the equation of a line; if c �= 0, it is the equation of a circle

since |b̄|2 > ca.

Note that this proof actually shows that K takes circles passing through

the origin to lines and all other circles to circles.

The other important property of Möbius transformations we shall need is

Proposition A.2.5

Every Möbius transformation is conformal.

This means that every Möbius transformation preserves the angle between

curves that intersect at a point of C.

The reader versed in complex analysis will be able to deduce Proposition

A.2.5 easily from the fact that holomorphic functions with non-vanishing

derivatives are conformal. We shall give a direct proof.
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Proof A.2.5

By Proposition A.2.2, it suffices to prove that translations, complex dilations

and the transformation K are conformal. Now translations and rotations are

isometries, hence conformal (Exercise 6.3.1), and it is easy to see that every

dilation Da with a > 0 is conformal. Hence, we are reduced to proving that K

is conformal. For this, we use the method of Exercise 6.1.4.

If u, v ∈ R, let
K(u+ iv) = ũ+ iṽ.

Then,

u+ iv = K(ũ+ iṽ) =
ũ− iṽ

ũ2 + ṽ2
,

i.e., u =
ũ

ũ2 + ṽ2
, v =

−ṽ

ũ2 + ṽ2
.

Hence,

du =
ṽ2 − ũ2

(ũ2 + ṽ2)2
dũ−

2ũṽ

(ũ2 + ṽ2)2
dṽ,

dv =
2ũṽ

(ũ2 + ṽ2)2
dũ+

ṽ2 − ũ2

(ũ2 + ṽ2)2
dṽ,

so the first fundamental form du2 + dv2 of R2 becomes

(ṽ2 − ũ2)2 + 4ũ2ṽ2

(ũ2 + ṽ2)4
(dũ2 + dṽ2) =

dũ2 + dṽ2

(ũ2 + ṽ2)2
.

Since this is a multiple of dũ2 + dṽ2, K is conformal.

A conjugate Möbius transformation is a map of the form

z C→ az̄ + b

cz̄ + d
,

where a, b, c, and d are complex numbers such that ad− bc �= 0. Of course, this

map is just the composite M ◦ C, where M is the Möbius transformation in

(A.2.1) and C is complex-conjugation C(z) = z̄.

There is an analogy in which Möbius and conjugate-Möbius transformations

correspond to direct and opposite isometries, respectively. This is illustrated in

the next result and in Proposition A.2.9 (see also the exercises in Section 6.5).

Corollary A.2.6

The composite of a Möbius transformation and a conjugate-Möbius transfor-

mation (in either order) is conjugate-Möbius; the composite of two conjugate-

Möbius transformations is Möbius.
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Proof

This follows immediately from Proposition A.2.1(ii) and the observation that,

if M is a Möbius transformation, so is C ◦M ◦ C. For example, if M and N

are Möbius transformations,

(M ◦ C) ◦N = M ◦ (C ◦N ◦ C) ◦ C,

since C ◦C is the identity map. Since M and C ◦N ◦C are Möbius transforma-

tions, so is M ◦ (C ◦N ◦ C), and hence (M ◦ C) ◦N is conjugate-Möbius.

The properties of conjugate-Möbius transformations are easily deduced from

those of Möbius transformations.

Corollary A.2.7

Conjugate-Möbius transformations take Circles to Circles and are conformal.

Proof

This follows from Propositions A.2.4 and A.2.5 and the fact that C, being the

reflection in the real axis, is conformal and takes lines to lines and circles to

circles.

Conjugate-Möbius transformations include two important classes of ge-

ometric transformations. The first of these have already been discussed in

Appendix 1, namely reflections in straight lines. We leave it to the reader to

check that the reflection in the line with complex equation

b̄z + bz̄ + c = 0,

where b ∈ C, c ∈ R and b �= 0, is

R(z) =
−bz̄ − c

b̄
.

Since lines and circles are, in some sense, on the same footing in CD, it is

natural to expect that there should be transformations that play the same role

with respect to circles that reflections play with respect to straight lines. These

are the inversions: the inversion Ia,r in the circle Ca,r with centre a ∈ C and

radius r > 0 takes a point z ∈ C with z �= a to the point z′ on the radius of

the circle passing through z such that the product of the distances of z and z′

from a is r2.
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a

z�

Ca;r

z

Thus, z′−a = ρ(z−a) for some ρ > 0 and |z′−a||z−a| = r2. These equations

give ρ = r2/|z − a|2 and hence

I a,r(z) = a+
r2

z̄ − ā
.

Since Ia,r is a conjugate-Möbius transformation, it takes Circles to Circles. In

fact, since Ia,r(a) = ∞, it is clear that Ia,r takes Circles passing through a to

lines and all other Circles to circles.

We shall also need the following property, which is not quite as obvious.

Proposition A.2.8

The inversion Ia,r takes a circle C to itself if and only if C intersects Ca,r
perpendicularly. In that case, Ia,r takes each of the two regions into which C
divides the plane to themselves.

Proof

Since Ia,r interchanges the interior and exterior of Ca,r, it is clear that if Ia,r
fixes C then C and Ca,r must intersect. Suppose for example that C is a circle

that intersects Ca,r at points P and Q (the proof when C is a line is similar but

easier). Then Ia,r interchanges the segments of C that are inside and outside

Ca,r, respectively. Since Ia,r is conformal, the angles made by the interior and

exterior segments of C with Ca,r at P , say, must be equal. Since the sum of

these angles is π, Ca,r and C must intersect perpendicularly at P .
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P

Q
C

Ca,r

Conversely, if C is a circle that intersects Ca,r at right angles, say at P and

Q, then Ia,r takes C to a circle that intersects Ca,r at right angles at P and Q.

But it is clear that there is a unique circle with these properties, namely C (for

the centre of the circle must be the intersection of the tangent lines to Ca,r at

P and Q).

Assume now that Ia,r takes C to itself, and let C have centre b and radius s.

Since Ca,r and C intersect perpendicularly, |b− a|2 = r2 + s2. Hence, Ia,r(b) =
b − s2

b̄−ā
, so |Ia,r(b) − b| = s2

| b−a| < s because s < |b − a|. Thus, Ia,r(b) ∈ D,

the interior of C. It follows that Ia,r takes every point c ∈ D to a point of D.

For suppose that Ia,r(c) is outside C. Now, Ia,r takes the line segment joining

b and c to a (smooth) curve γ joining the point Ia,r(b) inside C to the point

Ia,r(c) outside C, so γ must intersect C at a point d, say. Since Ia,r takes C to

itself, e = Ia,r(d) ∈ C. But since d is on γ, e is a point of the line segment with

endpoints b, c. This is a contradiction. It follows that Ia,r takes D to itself, and

since Ia,r is a bijection (indeed, it is equal to its own inverse), it must take the

region exterior C to itself.

The following result is analogous to Theorem A.1.5.

Proposition A.2.9

Every Möbius transformation and every conjugate-Möbius transformation is a

composite of reflections and inversions.
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Proof

By Proposition A.2.2, it is sufficient to prove that translations, complex

dilations and the maps C and K are composites of reflections and inversions.

By Theorem A.1.5, translations and rotations are composites of reflections,

and C is itself a reflection. We are therefore reduced to considering dilations

Da with a > 0 and the map K. But K is the composite of C with the inversion

I0,1, and Da is the composite I0,1 ◦ I0,a−1/ 2 .



Hints to selected exercises

1.1.6 Parametrize the ellipse by γ(t) = (p cos t, q sin t); for (i) show that

the distances in question are p(1 ± ǫ cos t); for (ii) show that n =

(q cos t, p sin t) is a vector perpendicular to the tangent line at γ(t)

and that the distances in question are |(p − f1) · n|/ ‖ n ‖ and

|(p− f2) · n|/ ‖ n ‖.

1.2.3 For the last part see the proof of Theorem 3.2.2.

1.4.5 (ii) The sequence in (i) converges to some limit TE ≥ 0 and γ is TE-

periodic; consider the sequence {Tr − TE}. (iii) Use the mean value

theorem.

1.4.6 Let γ(t) = (γ1(t), . . . , γn(t)). Then each γi is T -periodic and so by

Exercise 1.4.5, if γi is non-constant, it has a (positive) period, say Ti.

By Exercise 1.4.4, if γi is non-constant, T = kiTi for some positive

integer ki. Let k be the largest positive integer dividing each of the

integers ki. Show that γ is closed with period T0 = T/k.

1.5.2 To guess the analogue of the condition on f in Theorem 1.5.1, argue

that (∂f∂x ,
∂f
∂y ,

∂f
∂z ) is perpendicular to the surface f(x, y, z) = 0, and

then think about the condition that two planes intersect in a line. See

Section 5.6 for a rigorous treatment.

1.5.3 This is easy.

2.2.3 It is enough to show that κs changes sign when the curve is reflected in

a line.

2.2.10 Think of the tangent line to γ at a point γ(s) as being rigidly fixed to

γ. When γ has rolled a distance s, the point initially at γ(s) has moved

401
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to the point p+ sa on ℓ, and the tangent line to γ at γ(s) has become

ℓ. For the second part, note that ρ−θ(s)(γ̇(s)) = a. Show that

(i) if S is a skew-symmetric n×n matrix (i.e., −S is equal to the trans-

pose St of S), and if v is any n× 1 column matrix, then vtSv = 0;

(ii) IfA is an orthogonal matrix (i.e., AtA = I) whose entries are smooth

functions of a parameter s, then At dA
ds is skew-symmetric (the entries

of dA/ds are the derivatives of the entries of A).

2.3.2 Observe that it is enough to find one curve with curvature F and

torsion τ .

2.3.3 Assume that γ is unit-speed and show that a = t cos θ + b sin θ.

2.3.4 If γ lies on the sphere of centre a and radius r, then (γ−a)·(γ−a) = r2;

now differentiate repeatedly. For the converse, consider γ + ρn+ ρ̇σb.

2.3.6 Find a system of first-order differential equations satisfied by the dot

products vi · vj , and use the fact that such a system has a unique

solution with given initial conditions.

3.2.1 Use the results of Appendix 1.

3.3.1 Use the inequality 2x1x2 ≤ x2
1 + x2

2.

4.1.4 For the first part take U to be an annulus.

5.2.3 For the first part, parametrize the line by γ(t) = a+ tb, and note that

substituting into Eq. 5.1 gives a quadratic equation for t. For the second,

take three points on each line and show that there is a quadric passing

through all nine points.

5.6.1 Imitate the proof of Proposition 4.2.6.

5.6.4 If σ (u, v) = (f(u, v), g(u, v), h(u, v)), show that the matrix

(

fu fv
gu gv

)

is invertible. Follow the proof of Proposition 4.2.6 to get open

sets V and W and a smooth function F−1 : V → W such that

F−1(f(u, v), g(u, v)) = (u, v) for all (u, v) ∈ W . Let ϕ(x, y) =

h(F−1(x, y)).

6.1.5 The length of the side given by u = u0 is
∫ v1
v0

√

G(u0, v)dv.

6.3.8 Use Proposition A.2.5.

6.4.3 Choose a point inside the polygon and connect it to each vertex by a

great circle arc.

6.5.3 It is enough to treat the case in which p is the north pole.
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6.5.4 Call a unitary Möbius transformation as in part (i) special if b ∈ R.

Prove that every unitary Möbius transformation is a composite of special

unitary Möbius transformations.

7.1.2 By computing expressions such as (σu ·N)u, prove that Nu and Nv are

perpendicular to σu and σv, and deduce that the unit normal N of σ

is a constant vector.

7.3.4 Use Exercise 6.4.7.

7.4.3 Use Example 7.4.7.

8.1.6 Any 2 × 2 matrix A =

(

a c

b d

)

satisfies the equation

A2 − (a+ d)A+ (ad − bc)I = 0.

8.1.8 Inspect the proof of Theorem 8.1.6.

8.2.3 Consider separately the cases in which EN = GL and EN �= GL.

8.2.5 Use Exercise 8.2.2.

8.2.6 (i) Differentiate Eq. 8.5.

8.2.7 Use Proposition 8.1.2, the remarks following Proposition 8.2.1 and the

solution of Exercise 8.1.1.

8.2.8 Use Exercises 6.1.4 and 7.1.3.

8.3.1 For (iii) use polar coordinates in the disc.

8.4.1 Use Theorem8.2.4 and Propositions 7.3.5 and 8.4.3.

8.5.2 Use Exercise 8.1.1.

8.5.3 Use Exercise 8.2.4 and the proof of Proposition 8.1.2.

9.1.1 Use Propositions 9.1.4 and 9.1.6.

9.1.3 Use the solution of Exercise 4.2.7.

9.1.4 Take the ellipsoid to be x2

p2 + y2

q2 + z2

r2 = 1 and note that γ(t) =

(f(t), g(t), h(t)) is a geodesic if and only if (f̈ , g̈, ḧ) = λ( f
p2 ,

g
q2 ,

h
r2 ) for

some scalar λ(t).

9.1.5 Use Exercise 8.2.2.

9.2.2 Use Exercise 6.2.1.

9.3.3 The condition for a self-intersection is that, for some value of w > 1, the

two values of v satisfying Eq. 9.14 should differ by an integer multiple

of 2π.
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9.4.2 Consider the intersection of S2 with planes passing through p and q.

9.4.3 (i) Use L’Hospital’s rule.

9.5.2 (ii) If γ leaves σ, it must cross the geodesic circle with centre p and

radius R, say at q′. Then its length is greater than that of the part of

γ between p and q′.

10.1.1 Compute the matrix of the Weingarten map.

10.1.3 To solve the differential equation, put P = Lw2.

10.2.2 Use Exercises 6.1.4 and 9.5.1.

10.2.4 Use the geodesic equations, Exercise 9.5.1 and Corollary 10.2.3(ii).

10.3.1 As in the proof of Theorem 10.3.4, if G1 has a local maximum at a point

p of the surface, then G2 = 2H − G1 has a local minimum there.

10.4.2 Consider the matrix

(

2 0

0 1

)

.

10.4.3 Use Theorem 9.2.1.

11.1.4 For the first part use Propositions 11.1.4 andA.2.3. For the second, note

that 2R is the hyperbolic distance between i(b+ r) and i(b− r), etc.

11.2.1 It is enough to consider the case in which a and b are on the imaginary

axis.

11.2.2 Use Exercise 11.1.1.

11.2.3 Reduce to the case in which l is the imaginary axis and use Exercise

11.1.3.

11.2.4 (i) If P is any point on H, consider the hyperbolic lines passing through

P perpendicular to l and m. (iii) Let l and m be as in Exercise 11.2.3,

and let F be any isometry of H. The proof of Proposition 11.2.3 shows

that there is a composite G of elementary isometries that takes F (i) to

i and F (l) to l. Now use (ii).

11.2.5 Imitate the proof of Proposition A.2.2.

11.3.2 Compare the solution of Exercise 11.2.4.

11.3.3 Use Exercise 11.2.5.

11.3.4 Use Exercise 11.2.5.
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11.3.6 Prove this first for a right-angled triangle by applying the cosine rule in

two different ways. Then deduce the general case by drawing the geodesic

through a that intersects the geodesic through b and c perpendicularly –

you will have to consider separately the cases in which the point of

intersection does, or does not, lie between b and c.

11.3.8 Treat the right-angled case first using Exercise 11.3.7 and then proceed

as in Exercise 11.3.6.

11.4.2 Work in H and assume that l is the imaginary axis.

11.4.3 Work in DP and assume that a = 0, b ∈ R.

11.5.3 For the existence, note that M(z) = (a, b; c, z) is a Möbius transfor-

mation that takes (a, b, c) to (∞, 0, 1). For the uniqueness, note that

if M is a Möbius transformation that takes (a, b, c) to (∞, 0, 1), then

M(z) = (∞, 0; 1,M(z)) = (a, b; c, z).

12.1.1 Use Proposition 8.2.9.

12.1.3 Use Proposition 8.6.1 and Exercise 12.1.1.

12.2.4 Use Exercise 8.5.1.

12.3.1 Use Exercise 8.1.6 and Proposition8.2.9.

12.5.1 Reparametrize by putting ζ = eζ̃.

12.5.3 (ii) Use the Weierstrass representation and inspect Eqs. 12.25 and 12.26.

13.1.2 For the last part, use Theorem 13.1.2.

13.3.2 Define ψk(t) = ψ(nt − k), where ψ is the function defined in Exercise

8.5.3(iii), and let ϕk = ψk/(ψ1 + · · ·+ ψn−1).

13.5.2 E ≤ 1
2V (V − 1).

13.7.1 Take γ in Definition 13.7.2 to be the unit circle and use de Moivre’s

theorem.

13.7.3 If H̃ is another reference tangent vector field, and θ is the angle between

H̃ and H, then dθ/ds = −(1−ρ2)−1/2ρ̇, where ρ = cos θ. Now use Green’s

theorem to show that
∫ ℓ(γ)

0 (dθ/ds)ds = 0.

13.8.1 Show that the critical point is a local maximum (respectively local mini-

mum) if and only if vtHv < 0 (resp.> 0) for all non-zero 2×1 matrices v.
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Chapter 1

1.1.1 It is a parametrization of the part of the parabola with x ≥ 0.

1.1.2 (i) γ(t) = (tan t, sec t) with −π/2 < t < π/2 and π/2 < t < 3π/2. Note

that γ is defined on the union of two disjoint intervals: this corresponds

to the fact that the hyperbola y2 − x2 = 1 is in two pieces, where y ≥ 1

and where y ≤ −1. (ii) γ(t) = (2 cos t, 3 sin t).

1.1.3 (i) x+ y = 1. (ii) y = (lnx)2.

1.1.4 (i) γ̇(t) = sin 2t(−1, 1). (ii) γ̇(t) = (et, 2t).

1.1.5 γ̇(t) = 3 sin t cos t(− cos t, sin t) vanishes where sin t = 0 or cos t = 0, i.e.,

t = nπ/2 where n is any integer. These points correspond to the four

cusps of the astroid (see Exercise 1.3.3).

407
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1.1.6 (i) The squares of the distances from p to the foci are (p cos t ± ǫp)2 +

q2 sin2 t = (p2 − q2) cos2 t± 2ǫp2 cos t+ p2 = p2(1 ± ǫ cos t)2, so the sum

of the distances is 2p.

(ii) γ̇ = (−p sin t, q cos t) so if n = (q cos t, p sin t) then n·γ̇ = 0. Hence the

distances from the foci to the tangent line at γ(t) are (p cos t∓ ǫp,q sin t)·n
‖ n‖ =

pq(1∓ ǫ cos t)
(p2 sin2 t+q2 cos2 t)1/ 2

and their product is p2q2(1−ǫ2 cos2 t)
(p2 sin2 t+q2 cos2 t) = q2.

(iii) It is enough to prove that (p−f1)·n
‖p−f1‖

= (p−f2)·n
‖p−f2‖

. Computation shows

that both sides are equal to q.

t
a

at0

1.1.7 When the circle has rotated through an angle t, its centre has moved to

(at, a), so the point on the circle initially at the origin is now at the point

(a(t− sin t), a(1− cos t)) (see the diagram above).

1.1.8 Suppose that a point (x, y, z) lies on the cylinder if x2 + y2 = 1/4 and on

the sphere if (x+ 1
2 )

2+y2+z2 = 1. From the second equation, −1 ≤ z ≤ 1

so let z = sin t. Subtracting the two equations gives x+ 1
4 +sin2 t = 3

4 , so

x = 1
2−sin2 t = cos2 t− 1

2 . From either equation we then get y = sin t cos t

(or y = − sin t cos t, but the two solutions are interchanged by t → π− t).

1.1.9 γ̇ = (−2 sin t+ 2 sin 2t, 2 cos t− 2 cos 2t) =
√
2(
√
2 − 1, 1) at t = π/4. So

the tangent line is y− ( 1√
2
− 1) = (x−

√
2)/(

√
2− 1) and the normal line

is y − ( 1√
2
− 1) = −(x−

√
2)(

√
2− 1).

1.2.1 γ̇(t) = (1, sinh t) so ‖ γ̇ ‖= cosh t and the arc-length is s =
∫ t

0 coshu du =

sinh t.

1.2.2 (i) ‖ γ̇ ‖2= 1
4 (1 + t) + 1

4 (1− t) + 1
2 = 1.

(ii) ‖ γ̇ ‖2= 16
25 sin

2 t+ cos2 t+ 9
25 sin

2 t = cos2 t+ sin2 t = 1.

1.2.3 Denoting d/dθ by a dot, γ̇ = (ṙ cos θ− r sin θ, ṙ sin θ+ r cos θ) so ‖ γ̇ ‖2=
ṙ2+r2. Hence, γ is regular unless r = ṙ = 0 for some value of θ. It is unit-

speed if and only if ṙ2 = 1− r2, which gives r = ±1 or r = ± sin(θ + α)

for some constant α. To see that the latter is the equation of a circle of

radius 1/2, see the diagram in the proof of Theorem 3.2.2.
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1.2.4 Since u is a unit vector, |γ̇ ·u| = ‖ γ̇ ‖ cos θ, where θ is the angle between

γ̇ and u, so γ̇ ·u≤‖ γ̇ ‖. Then, (q−p)·u= (γ(b)−γ(a))·u =
∫ b

a
γ̇ ·udt ≤

∫ b

a ‖ γ̇ ‖ dt. Taking u= (q− p)/ ‖ q− p ‖ gives the result.

1.3.1 (i) γ̇ = sin 2t(−1, 1) vanishes when t is an integer multiple of π/2,

so γ is not regular. (ii) γ is regular since γ̇ �= 0 for 0 < t < π/2.

(iii) γ̇ = (1, sinh t) is obviously never zero, so γ is regular.

1.3.2 x = r cos θ = sin2 θ, y = r sin θ = sin2 θ tan θ, so the parametrization in

terms of θ is θ → (sin2 θ, sin2 θ tan θ). Since θ → sin θ is a bijective smooth

map (−π/2, π/2) → (−1, 1), with smooth inverse t → sin−1 t, t = sin θ is

a reparametrization map. Since sin2 θ = t2, sin2 θ tan θ = t3/
√
1− t2, so

the reparametrized curve is as stated.

1.3.3 (i) γ̇ = 0 at t = 0 ⇐⇒ m and n are both ≥ 2. If m > 3 the first compo-

nents of γ̈ and
...
γ are both 0 at t = 0 so γ̈ and γ̈ are linearly dependent

at t = 0; similarly if n > 3. So there are four cases: if (m,n) = (2, 2) or

(3, 3) then either γ̈ or
...
γ is zero at t = 0, so the only possibilities for an

ordinary cusp are (m,n) = (2, 3) and (3, 2) and then γ̈ and
...
γ are easily

seen to be linearly independent at t = 0. (ii) Using the parametrization

γ(t) =
(

t2, t3√
1−t2

)

, we get γ̇ = 0, γ̈ = (2, 0),
...
γ = (0, 6) at t = 0

so the origin is an ordinary cusp. (iii) Let γ̃(t̃) be a reparametriza-

tion of γ(t), and suppose γ has an ordinary cusp at t = t0. Then,

at t = t0, dγ̃/dt̃ = (dγ/dt)(dt/dt̃) = 0, d2γ̃/dt̃2 = (d2γ/dt2)(dt/dt̃)2,

d3γ̃/dt̃3 = (d3γ/dt3)(dt/dt̃)3+3(d2γ/dt2)(dt/dt̃)(d2t/dt̃2). Using the fact

that dt/dt̃ �= 0, it is easy to see that d2γ̃/dt̃2 and d3γ̃/dt̃3 are linearly

independent when t = t0.

1.3.4 (i) If γ̃(t) = γ(ϕ(t)), let ψ be the inverse of the reparametrization

map ϕ. Then γ̃(ψ(t)) = γ(ϕ(ψ(t))) = γ(t). (ii) If γ̃(t) = γ(ϕ(t)) and

γ̂(t) = γ̃(ψ(t)), where ϕ and ψ are reparametrization maps, then γ̂(t) =

γ((ϕ ◦ ψ)(t)) and ϕ ◦ ψ is a reparametrization map because it is smooth

and d
dt(ϕ(ψ(t)) = ϕ̇(ψ(t))ψ̇(t) �= 0 as ϕ̇ and ψ̇ are both �= 0.

1.4.1 It is closed because γ(t+ 2π) = γ(t) for all t. Suppose that γ(t) = γ(u).

Then cos3 t(cos 3t, sin 3t) = cos3 u(cos 3u, sin 3u). Taking lengths gives

cos3 t = ± cos3 u so cos t = ± cosu, so u = t, π − t, π + t or 2π − t (up to

adding multiples of 2π). The second possibility forces t = nπ/3 for some

integer n and the third possibility is true for all t. Hence, the period is π

and for the self-intersections we need only consider t = π/3, 2π/3, giving

u = 2π/3, π/3, respectively. Hence, there is a unique self-intersection at

γ(π/3) = (−1/8, 0).

1.4.2 The curve γ̃(t) = (cos(t3 + t), sin(t3 + t)) is a reparametrization of the

circle γ(t) = (cos t, sin t) but it is not closed.
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1.4.3 If γ is T -periodic then it is kT -periodic for all k �= 0 (this can be proved

by induction on k if k > 0, or on −k if k < 0). If γ is T1-periodic and

T2-periodic then it is k1T1- and k2T2-periodic for all non-zero integers

k1, k2, so γ(t + k1T1 + k2T2) = γ(t + k1T1) as γ is k2T2-periodic, which

= γ(t) as γ is k1T1-periodic.

1.4.4 If γ is T -periodic write T = kT0 + T1 where k is an integer

and 0 ≤ T1 < T0. By Exercise 1.4.3 γ is T1-periodic; if T1 > 0 this

contradicts the definition of T0.

1.4.5 (i) Choose T1 > 0 such that γ is T1-periodic; then T1 is not the smallest

positive number with this property, so there is a T2 > 0 such that γ is T2-

periodic. Iterating this argument gives the desired sequence. (ii) The se-

quence {Tr}r ≥ 1 in (i) is decreasing and bounded below, so must converge

to some TI ≥ 0. Then γ is TI-periodic because (using continuity of γ)

γ(t+ TI) = limrJI γ(t+ Tr) = limrJI γ(t) = γ(t). By Exercise 1.4.3,

γ is (Tr − TI)-periodic for all r ≥ 1, and this sequence of positive num-

bers converges to 0. (iii) If {Tr} is as in (i) and Tr → 0 as r → ∞, then

by the mean value theorem 0 = (f(t + Tr) − f(t))/Tr = ḟ(t + λTr) for

some 0 < λ < 1. Letting r → ∞ gives ḟ(t) = 0 for all t, so f is constant.

1.4.6 Following the hint, since T0 = (ki/k)Ti is an integer multiple of Ti, each

γi is T0-periodic. Let T be the union of the finite sets of real numbers

{Ti, 2Ti, . . . , kiTi} over all i such that γi is not constant, and let P =

{T ′ ∈ T |γ is T ′-periodic}. Then P is finite (because T is) and non-

empty (because T ∈ P). The smallest element of P is the smallest positive

number T ′
0 such that γ is T ′

0-periodic (since if γ is T ′-periodic either

T ′ > T or T ′ ∈ P). By Exercise 1.4.4, T0 = k′T ′
0 for some integer k′ and

then there are integers k′i such that T ′
0 = k′iTi for all i such that γi is

not constant. Then, kiTi/k = k′kiTi so kk′ divides each ki. As k is the

largest such divisor, k′ = 1, so T0 = T ′
0.

1.5.1 x(1 − x2) ≥ 0 ⇐⇒ x ≤ −1 or 0 ≤ x ≤ 1 so the curve is in (at least) two

pieces. The parametrization is defined for t ≤ −1 and 0 ≤ t ≤ 1 and it

covers the part of the curve with y ≥ 0.

1.5.2 If γ(t) = (x(t), y(t), z(t)) is a curve in the surface f(x, y, z) = 0, differen-

tiating f(x(t), y(t), z(t)) = 0 with respect to t gives ẋfx + ẏfy + żfz = 0,

so γ̇ is perpendicular to∇f = (fx, fy, fz). Since this holds for every curve

in the surface, ∇f is perpendicular to the surface. The surfaces f = 0

and g = 0 should intersect in a curve if the vectors ∇f and ∇g are not

parallel at any point of the intersection.

1.5.3 Let γ(t) = (u(t), v(t), w(t)) be a regular curve in R3. At least one of u̇, v̇, ẇ

is non-zero at each value of t. Suppose that u̇(t0) �= 0 and x0 = u(t0). As
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in the ‘proof’ of Theorem 1.5.2, there is a smooth function h(x) defined

for x near x0 such that t = h(x) is the unique solution of x = u(t)

for each t near t0. Then, for t near t0, γ(t) is contained in the level

curve f(x, y, z) = g(x, y, z) = 0, where f(x, y, z) = y − v(h(x)) and

g(x, y, z) = z − w(h(x)). The functions f and g satisfy the conditions in

the previous exercise, since ∇f = (−v̇h′, 1, 0), ∇g = (−ẇh′, 0, 1), a dash

denoting d/dx.

Chapter 2

2.1.1 (i) γ is unit-speed (Exercise 1.2.2(i)) so K = ‖ γ̈ ‖=‖ (14 (1 + t)−1/2,
1
4 (1 − t)−1/2, 0) ‖= 1√

8(1−t2)
. (ii) γ is unit-speed (Exercise 1.2.2(ii)) so

K = ‖ γ̈ ‖= ‖ (− 4
5 cos t, sin t,

3
5 cos t) ‖= 1.

(iii) K = ‖ (1,sinh t,0) × (0,cosh t,0)‖
‖ (1,sinh t,0)‖ 3 = cosh t

cosh3 t
= sech2t using Proposi-

tion 2.1.2.

(iv) (−3 cos2 t sin t, 3 sin2 t cos t, 0)×(−3 cos3 t+6 cos t sin2 t, 6 sin t cos2 t−
3 sin3 t, 0) = (0, 0,−9 sin2 t cos2 t), so K = ‖ (0,0,−9 sin2 t cos2 t)‖

‖(−3 cos2 t sin t,3 sin2 t cos t,0)‖3 =
1

3| sin t cos t| . This becomes infinite when t is an integer multiple of π/2,

i.e., at the four cusps (±1, 0) and (0,±1) of the astroid.

2.1.2 The proof of Proposition 1.3.5 shows that, if v(t) is a smooth (vector)

function of t, then ‖ v(t) ‖ is a smooth (scalar) function of t provided

v(t) is non-zero for all t. The result now follows from the formula in

Proposition 2.1.2. The curvature of the regular curve γ(t) = (t, t3) is

K(t) = 6|t|/(1 + 9t4)3/2, which is not differentiable at t = 0.

2.2.1 Differentiate t · ns = 0 and use ṫ = Ksns.

2.2.2 If γ is smooth, t = γ̇ is smooth and hence so are ṫ and ns (since ns is

obtained by applying a rotation to t). So Ks = ṫ · ns is smooth.

2.2.3 For the first part, from the results in Appendix 2 it suffices to show that

K̃s = −Ks if M is the reflection in a straight line l. But this is clear: if we

take the fixed angle L0 in Proposition 2.2.1 to be the angle between l and

the positive x-axis, then (in the obvious notation) L̃ = −L. Conversely,

if γ and γ̃ have the same non-zero curvature, their signed curvatures

are either the same or differ in sign. In the first case the curves differ

by a direct isometry by Theorem 2.2.5; in the latter case, applying a

reflection to one curve gives two curves with the same signed curvature,

and these curves then differ by a direct isometry, so the original curves

differ by an opposite isometry.
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2.2.4 The first part is obvious as the effect of the dilation is to multiply s by

a and leave ϕ unchanged. For the second part, consider the small piece

of the chain between the points with arc-length s and s + δs. The net

horizontal force on this piece is (in the obvious notation) δ(T cosϕ), and

as this must vanish T cosϕ must be a constant, say λ. The net vertical

force is δ(T sinϕ), and this must balance the weight of the piece of chain,

which is a constant multiple of δs. This shows that T sinϕ = μs+ ν for

some constants μ, ν , and ν must be zero because ϕ = s = 0 at the

lowest point of C. From T cosϕ =λ, T sinϕ =μs, we get tanϕ = s/a

where a = λ/μ. Hence, sec2 ϕ dϕ
ds = 1/a, so the signed curvature is

Ms =NOPds =1/a sec2 O =1/a(1+ tan2 O) = 1
a (1+ s2/a2)−1. Using the

first part and Example 2.2.4 gives the result.

2.2.5 We have dγλ/dt = dγ/dt + QNns/dt = (1 − QMs)ds/dt t, so the arc-

length sλ of γλ satisfies dsλ/dt = |1 − QMs|ds/dt. The unit tangent

vector of γλ is tλ = (dγλ/dt)/(dsλ/dt) = ǫt, hence the signed unit

normal of γλ is nλ
s =ǫns. Then, the signed curvature Mλ

s of γλ is given

by Mλ
sn

λ
s =dtλ/dsλ =(dtλ/dt)/|1− QMs|(ds/dt) =ǫ|1− QMs|

−1dt/ds =

Ms(1 − QMs)
−1ns =ǫκs(1− λκs)

−1nλ
s =κs|1− λκs|

−1nλ
s .

2.2.6 ǫ(s0) lies on the perpendicular bisector of the line joining γ(s0) and

γ(s0 + δs). So

(ǫ(s0)−
1

2
(γ(s0) + γ(s0 + δs))) · (γ(s0 + δs)− γ(s0)) =0.

Using Taylor’s theorem, and discarding terms involving powers of δs

higher than the second, this gives (with all quantities evaluated at s0)

(ǫ − γ) · γ̇δs+ 1
2 (ǫ · γ̈ − 1− γ · γ̈)(δs)2 =0. This must also hold when

δs is replaced by −δs; adding and subtracting the two equations give

(ǫ− γ) · γ̇ =0 and (ǫ− γ) · γ̈ =1. The first equation gives ǫ =γ + λns

for some scalar λ, and since γ̈ =κsns the second gives λ =1/κs.

2.2.7 The tangent vector of ǫ is t+ 1
κs
(−κst)−

κ̇s

κ2
s
ns =− κ̇s

κ2
s
ns so its arc-length

is u =
∫

‖ ǫ̇ ‖ ds =
∫

κ̇s

κ2
s
ds =u0 − 1

κs
, where u0 is a constant. Hence,

the unit tangent vector of ǫ is −ns and its signed unit normal is t. Since

−dns/du =κst/(du/ds) =
κ3
s

κ̇s
t, the signed curvature of ǫ is κ3

s/κ̇s.

Any point on the normal line to γ at γ(s) is γ(s) + λns(s) for some λ.

Hence, the normal line intersects ǫ at the point ǫ(s), where λ =1/κs(s),

and since the tangent vector of ǫ there is parallel to ns(s) by the first

part, the normal line is tangent to ǫ at ǫ(s).

Denoting d/dt by a dash, γ ′ =a(1− cos t, sin t) so the arc-length s of γ

is given by ds/dt =2a sin(t/2) and t =dγ/ds =(sin(t/2), cos(t/2)). So

ns =(− cos(t/2), sin(t/2)) and ṫ =(dt/dt)/(ds/dt)= 1
4a sin(t/2) (cos(t/2),
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− sin(t/2)) = −1/4a sin(t/2)ns, so the signed curvature of γ is

−1/4a sin(t/2) and its evolute is

ǫ(t) = a(t− sin t, 1− cos t)− 4a sin(t/2)(− cos(t/2), sin(t/2))

= a(t+ sin t,−1 + cos t).

Reparametrizing ǫ by t̃ = π+ t, we get a(t̃− sin t̃, 1− cos t̃)+a(−π,−2),

so ǫ is obtained from a reparametrization of γ by translating by the

vector a(−π,−2).

2.2.8 The free part of the string is tangent to γ at γ(s) and has length

ℓ − s, hence the stated formula for ι(s). The tangent vector of ι is

γ̇ − γ̇ + (ℓ− s)γ̈ = Rs(ℓ − s)ns (a dot denotes d/ds). The arc-length v

of ι is given by dv/ds = Rs(ℓ − s) so its unit tangent vector is ns and

its signed unit normal is −t. Now dns/dv = 1
κs (ℓ−s) ṅs = −1

ℓ−st, so the

signed curvature of ι is 1/(ℓ− s).

2.2.9 The arc-length parametrization of the catenary is γ̃(s) = (sinh−1 s,√
1 + s2). The involute ι(s) = γ̃(s)−s ˙̃γ(s) =

(

sinh−1 s− s√
1+s2

, 1√
1+s2

)

= (u − tanhu, sechu) if u = sinh−1 s. Thus, if (x, y) is a point on the

involute ι, u = cosh−1(1/y) and x = cosh−1(1/y)−
√

1− y2.

2.2.10 The rotation ρ−θ(s) takes the tangent line of γ at γ(s) to l and the line

joining q and γ(s) to a line parallel to that joining Γ(s) to p+sa. Hence,

Γ(s)−(p+sa) = ρ−θ(s)(q−γ(s)), which gives the stated equation. Now,

Γ̇(s) = a +
(

d
dsρ−θ(s)

)

(q − γ(s)) − ρ−θ(s)γ̇(s). The last term is clearly

parallel to a and as they are both unit vectors they are equal. So we want

to prove that
(

d
dsρ−θ(s)

)

(q−γ(s)) · ρ−θ(s)(q−γ(s)) = 0. If A = ρ−θ(s),

v = q − γ(s), we have to show (in matrix notation) (Av)t dAds v = 0,

i.e., vtAt dA
ds v = 0. Since A is orthogonal, this follows from parts (i) and

(ii) of the hint. To prove (i), use components: vtSv =
∑

i,j vivjSij =
∑

i,j vjviSji = −∑

i,j vivjSij . For (ii), differentiate AtA = I.

2.3.1 (i) t = (12 (1+ t)1/2,− 1
2 (1− t)1/2, 1√

2
) is a unit vector so γ is unit-speed;

ṫ = (14 (1+t)−1/2, 1
4 (1−t)−1/2, 0), so R = ‖ ṫ ‖= 1/

√

8(1− t2); n = 1
κ ṫ =

1√
2
((1− t)1/2, (1 + t)1/2, 0); b = t×n = (− 1

2 (1 + t)1/2, 1
2 (1− t)1/2, 1√

2
);

ḃ = (− 1
4 (1 + t)−1/2,− 1

4 (1− t)−1/2, 0) so the torsion τ = 1/
√

8(1− t2).

The equation ṅ = −Rt+ τn is easily checked.

(ii) t = (− 4
5 sin t,− cos t, 3

5 sin t) is a unit vector so γ is unit-speed;

ṫ = (− 4
5 cos t, sin t,

3
5 cos t), so R = ‖ ṫ ‖= 1; n = 1

κ ṫ = (− 4
5 cos t, sin t,

3
5 cos t); b = t × n = (− 3

5 , 0,− 4
5 ), so ḃ = 0 and τ = 0. By the

proof of Proposition 2.3.5, γ is a circle of radius 1SR = 1 with centre

γ + 1
κn = (0, 1, 0) in the plane passing through (0, 1, 0) perpendicular

to b = (− 3
5 , 0,− 4

5 ), i.e., the plane 3x+ 4z = 0.
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2.3.2 Let a = TU(T2 + τ2), b = τ/(T2 + τ2). By Examples 2.1.3 and 2.3.2, the

circular helix with parameters a and b has curvature a/(a2 + b2) = T

and torsion b/(a2 + b2) = τ . By Theorem 2.3.6, every curve with curva-

ture T and torsion τ is obtained by applying a direct isometry to this

helix.

2.3.3 Differentiating t · a (= constant) gives n · a = 0; since t,n,b are an or-

thonormal basis of R3, a = t cos θ+μb for some scalar μ; since a is a unit

vector, μ = ± sin θ; differentiating a = t cos θ± b sin θ gives τ = κ cot θ.

Conversely, if τ = λκ, there exists θ with λ = cot θ; differentiating shows

that a = t cos θ + b sin θ is a constant vector and t · a = cos θ so θ is

the angle between t and a. For the circular helix in Example 2.1.3, the

angle between the tangent vector dγ/dθ = (−a sin θ, a cos θ, b) and the

z-axis is the constant cos−1(b/
√
a2 + b2).

2.3.4 Differentiating (γ − a) · (γ − a) = r2 repeatedly gives t · (γ − a) = 0;

t · t + κn · (γ − a) = 0, so n · (γ − a) = −1/κ; n · t + (−κt + τb) ·
(γ − a) = κ̇/κ2, and so b · (γ − a) = κ̇/τκ2; and finally b · t − τn ·
(γ− a) = (κ̇/τκ2)̇, and so τ/κ = (κ̇/τκ2)̇. Conversely, if Eq. 2.22 holds,

then ρ = −σ(ρ̇σ)̇, so (ρ2 + (ρ̇σ)2 )̇ = 2ρρ̇ + 2(ρ̇σ)(ρ̇σ)̇ = 0, hence ρ2 +

(ρ̇σ)2 is a constant, say r2 (where r > 0). Let a = γ + ρn+ ρ̇σb; then

ȧ = t + ρ̇n + ρ(−κt + τb) + (ρ̇σ)̇b + (ρ̇σ)(−τn) = 0 using Eq. 2.22;

so a is a constant vector and ‖ γ − a ‖2= ρ2 + (ρ̇σ)2 = r2, hence γ is

contained in the sphere with centre a and radius r.

2.3.5 Γ̇ = P γ̇ so T = P t and ‖ Γ̇ ‖2= (P γ̇) · (P γ̇) = γ̇ · γ̇ since P is

orthogonal. Then, Γ̈ = P γ̈, taking lengths shows that γ and Γ have

the same curvature κ, and then dividing by κ gives N = Pn. Then

B = P t × Pn. If P corresponds to a direct isometry (i.e., a rotation),

this is equal to P (t × n) = Pb, but if P corresponds to an opposite

isometry, P t× Pn = −Pb (Proposition A.1.6).

2.3.6 Let λij = vi · vj . The vectors v1,v2,v3 are orthonormal if and only if

λij = δij (= 1 if i = j and = 0 if i �= j). So it is enough to prove that

λij = δij for all values of s given that it holds for s = s0. Differentiating

vi · vj gives λ̇ij =
∑ 3

k=1(aikλkj + ajkλik). Now λij = δij is a solution

of this system of differential equations because aij + aji = 0. But the

theory of ordinary differential equations tells us that there is a unique

solution with given values when s = s0.
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Chapter 3

3.1.1 γ̇ = (− sin t − a sin 2t, cos t+ a cos 2t) so ‖ γ̇ ‖2= 1 + a2 + 2a cos t. This

is ≥ 1 + a2 − 2|a| = (1 − |a|)2 so γ is regular if |a| �= 1. If |a| = 1 then

‖ γ̇ ‖= 2(1 + a cos t) so the origin is a singular point of γ. If a = 0

then γ is a circle. If 0 < |a| < 1, then γ(t1) = γ(t2) =⇒ 1 + a cos t1 =

1 + a cos t2 =⇒ cos t1 = cos t2 =⇒ t2 = t1 or 2π − t1. In the latter case,

γ(t2) = ((1 + a cos t1) cos t1,−(1 + a cos t1) sin t1) so γ(t1) = γ(t2) =⇒
sin t1 = 0 =⇒ t1 = 0 or π. In all cases, t2 − t1 is a multiple of 2π, so γ

is a closed curve with period 2π without self-intersections. If |a| > 1, γ

passes through the origin when cos t = −1/a, which has two roots with

0 ≤ t < 2π, say t1 < t2, so the origin is a self-intersection. The picture is

qualitatively similar to that in Example 1.1.7 (which is the case a = 2),

so the complement of the image of γ is the union of two bounded regions

enclosed by the part of the curve with t1 ≤ t ≤ t2, and an unbounded

region.

3.2.1 By Appendix 1, any isometry M of R2 is of the form M(v) = Pv + b,

where P is a 3 × 3 orthogonal matrix and b is a constant vector. If

γ̃ = M(γ), then ˙̃γ = P γ̇, so ‖ ˙̃γ ‖= ‖ γ̇ ‖, which implies that γ and γ̃

have the same length. If we think of γ as a curve in the xy-plane in R3,

Eq. 3.2 can be written A(γ) =
∫ T

0
(γ̇× γ̈)·kdt, where k= (0, 0, 1). It now

follows from Proposition A.1.6 that γ and γ̃ have the same area (note that

if M is opposite, the area appears to change sign, but it does not because

in that case γ̃ is negatively oriented when γ is positively-oriented).

3.2.2 Parametrizing the ellipse by γ(t) = (p cos t, q sin t), with 0 ≤ t ≤ 2π, its

area is 1
2

∫ 2π

0
(pq sin2 t+pq cos2 t)dt = πpq. By the isoperimetric inequality,

the length ℓ of the ellipse satisfies ℓ ≥ √
4π × πpq = 2π

√
pq, with equality

if and only if the ellipse is a circle, i.e., p = q. But its length is
∫ 2π

0
‖ γ̇ ‖

dt =
∫ 2π

0

√

p2 sin2 t+ q2 cos2 t dt.

3.3.1 Let (x1, y1) and (x2, y2) be points in the interior of the ellipse, so that
x2
i

p2 +
y2
i

q2 < 1 for i = 1, 2. A point of the line segment joining the two

points is (tx1 + (1 − t)x2, ty1 + (1 − t)y2) for some 0 ≤ t ≤ 1. This is in

the interior of the ellipse because

(tx1 + (1− t)x2)
2

p2
+

(ty1 + (1− t)y2)
2

q2

= t2
(

x2
1

p2
+

y21
q2

)

+ (1− t)2
(

x2
2

p2
+

y22
q2

)

+ 2t(1− t)

(

x1x2

p2
+

y1y2
q2

)
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< t2 + (1− t)2 + t(1− t)

(

x2
1

p2
+

y21
q2

+
x2
2

p2
+

y22
q2

)

≤ t2 + (1− t)2 + 2t(1− t) = 1.

3.3.2 γ̇ = (− sin t − 2 sin 2t, cos t + 2 cos 2t) and ‖ γ̇ ‖=
√
5 + 4 cos t, so the

angle ϕ between γ̇ and the x-axis is given by cosϕ = − sin t−2 sin 2t√
5+4 cos t

,

sinϕ = cos t+2 cos 2t√
5+4 cos t

. Differentiating the second equation gives ϕ̇ cosϕ =

− sin t(24 cos2 t+42 cos t+9)
(5+4 cos t)3/ 2

, so ϕ̇ = sin t(24 cos2 t+42 cos t+9)
(5+4 cos t)(sin t+2 sin 2t) = 9+6 cos t

5+4 cos t .

Hence, if s is the arc-length of γ, Vs = WXYds = (WXYdt)/(ds/dt) =

(9 + 6 cos t)/(5 + 4 cos t)3/2, so V̇s = 12 sin t(2 + cos t)/(5 + 4 cos t)5/2.

This vanishes at only two points of the curve, where t = 0 and t = π.

3.3.3 From ǫ(s) = γ(s)+ 1
κs
ns we get ǫ̇ = −V̇snsYV2

s, so ǫ has a singular point

where V̇s = 0, i.e., where γ has a vertex.

Chapter 4

4.1.1 Let U be an open disc in R2 and S = {(x, y, z) ∈ R3 | (x, y) ∈ U, z = 0}.
If W = {(x, y, z) ∈ R3 | (x, y) ∈ U}, then W is an open subset of R3,

and S ∩W is homeomorphic to U by (x, y, 0) → (x, y). So S is a surface.

4.1.2 The image of σx
± is the intersection of the sphere with the open set±x > 0

in R3, and its inverse is the projection (x, y, z) → (y, z). Similarly for σy
±

and σz
± . A point of the sphere not in the image of any of the six patches

would have to have x, y and z all zero, which is impossible.

4.1.3 Multiplying the two equations gives (x2−z2) sin θ cos θ=(1−y2) sin θ cos θ,

so x2 + y2 − z2 = 1 unless cos θ = 0 or sin θ = 0; if cos θ = 0,

then x = −z and y = 1 and if sin θ = 0 then x = z and y = −1,

and both of these lines are also contained in the surface. The given

line Lθ passes through (sin 2θ,− cos 2θ, 0) and is parallel to the vec-

tor (cos 2θ, sin 2θ, 1); it follows that we get all of the lines by taking

0 ≤ θ < π. Let (x, y, z) be a point of the surface; if x �= z, let θ be such

that cot θ = (1 − y)/(x− z); then (x, y, z) is on Lθ; similarly if x �= −z.

The only remaining cases are the points (0, 0,±1), which lie on the lines

Lπ/2 and L0. To get a surface patch covering S, define σ : U → R3

by σ(u, v) = (sin 2θ,− cos 2θ, 0) + t(cos 2θ, sin 2θ, 1), By the preceding

paragraph, this patch covers the whole surface.

Let Mϕ be the line (x − z) cosϕ = (1 + y) sinϕ, (x + z) sinϕ = (1 − y)

cosϕ. By the same argument as above, Mϕ is contained in the surface
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and every point of the surface lies on some Mϕ with 0 ≤ ϕ < π. If

θ + ϕ is not a multiple of π, the lines Lθ and Mϕ intersect in the point

( cos(θ−ϕ)
sin(θ+ϕ) ,

sin(θ−ϕ)
sin(θ+ϕ) ,

cos(θ+ϕ)
sin(θ+ϕ) ); for each θ with 0 ≤ θ < π, there is exactly

one ϕ with 0 ≤ ϕ < π such that θ+ϕ is a multiple of π, and the lines Lθ

and Mϕ do not intersect. If (x, y, z) lies on both Lθ and Lϕ, with θ �= ϕ,

then (1− y) tan θ = (1− y) tanϕ and (1 + y) cot θ = (1− y) cotϕ, which

gives both y = 1 and y = −1 (the case in which θ = 0 and ϕ = π/2, or

vice versa, has to be treated separately, but the conclusion is the same).

This shows that Lθ and Lϕ do not intersect; similarly, Mθ and Mϕ do

not intersect.

4.1.4 For the first part, let U = {(u, v) ∈ R2 | 0 < u2 + v2 < π2}, let

r =
√
u2 + v2, and define σ : U → R3 by σ(u, v) = (ur ,

v
r , tan(r − π

2 )).

If S2 could be covered by a single surface patch σ : U → R3, then S2

would be homeomorphic to the open subset U of R2. As S2 is a closed

and bounded subset of R3, it is compact. Hence, U would be compact,

and hence closed. But, since R2 is connected, the only non-empty subset

of R2 that is both open and closed is R2 itself, and this is not compact

as it is not bounded.

4.1.5 If {σα : Uα → R3} is an atlas for a surface S, and if W is an open subset

of R3, the restrictions {σ|Uα ∩σ
−1
α (W )} form an atlas of S ∩W (one should

discard the restrictions for which Uα ∩ σ−1
α (W ) is empty).

4.2.1 σ is obviously smooth and σu × σv = (−fu,−fv, 1) is nowhere zero, so

σ is regular.

4.2.2 σz
± is a special case of Exercise 4.2.1, with f = ±

√
1− u2 − v2

(
√
1− u2 − v2 is smooth because 1− u2 − v2 > 0 if (u, v) ∈ U); similarly

for the other patches. The transition map from σx
+ to σ

y
+, for example, is

Φ(ũ, ṽ) = (u, v), where σ
y
+(ũ, ṽ) = σx

+(u, v); so u =
√
1− ũ2 − ṽ2, v = ṽ,

and this is smooth since 1− ũ2 − ṽ2 > 0 if (ũ, ṽ) ∈ U .

4.2.3 (i) is clearly injective and is regular because σ is smooth and σu ×σv =

(−v,−u, 1) is never zero. (ii) is injective but is not regular since σu×σv =

(0,−3v2, 2v) vanishes when v = 0. (iii) is not injective because σ(u, v) =

σ(−u− 1, v) and is also not regular since σu ×σv = 0, 2v(1+2u, 1+ 2u)

vanishes when u = −1/2.

4.2.4 This is similar to Example 4.1.4, but using the ‘latitude-longitude’ patch

σ(θ, ϕ) = (p cos θ cosϕ, q cos θ sinϕ, r sin θ).

4.2.5 A typical point on the circle C has coordinates (a+ b cos θ, 0, b sin θ); ro-

tating this about the z-axis through an angle ϕ gives the point σ(θ, ϕ);

the torus is covered by the four patches obtained by taking (θ, ϕ) to lie
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in one of the following open sets:

(i) 0 < θ < 2π, 0 < ϕ < 2π, (ii) 0 < θ < 2π,−π < ϕ < π,

(iii) −π < θ < π, 0 < ϕ < 2π, (iv) −π < θ < π,−π < ϕ < π.

Each patch is regular because

σθ × σϕ = −b(a+ b cos θ)(cos θ cosϕ, cos θ sinϕ, sin θ)

is never zero (since a+ b cos θ ≥ a− b > 0).

4.2.6 Suppose the centre of the propeller is initially at the origin. At time

t, the centre is at (0, 0, αt) where α is the speed of the aeroplane. If

the propeller is initially along the x-axis, the point initially at (v, 0, 0)

is therefore at the point (v cosωt, v sinωt, αt) at time t, where ω is the

angular velocity of the propeller. Let u = ωt, λ = α/ω. Next, σu =

(−v sinu, v cosu, λ), σv = (cosu, sinu, 0), so the standard unit normal is

N = (λ2 + v2)−1/2(−λ sinu, λ cosu,−v). If θ is the angle between N and

the z-axis, cos θ = −v/(λ2 + v2)1/2 and hence cot θ = ±v/λ, while the

distance from the z-axis is v.

4.2.7 σ is the tube swept out by a circle of radius a in a plane perpendicular to γ

as its centre moves along γ. σs=(1−κa cos θ)t−τa sin θn+τa cos θb, σθ =

−a sin θn+ a cos θb, giving σs × σθ = −a(1− κa cos θ)(cos θn+ sin θb);

this is never zero since κa < 1 implies that 1− κa cos θ > 0 for all θ.

4.2.8 If σ̃ = σ + a, where a is a constant vector, then σ̃ is smooth if σ is

smooth, and σ̃u = σu, σ̃v = σv, so σ̃ is regular if σ is regular. If A is an

invertible 3×3 matrix and σ̃ = Aσ, then σ̃ is smooth if σ is smooth and

σ̃u = Aσu, σ̃v = Aσv, so since A is invertible σ̃u and σ̃v are linearly

independent if σu and σv are linearly independent.

4.2.9 See Exercise 4.1.5. The restriction of a smooth map U → R2, where U is

an open subset of R2, to an open subset of U is smooth.

4.3.1 If S is covered by a single surface patch σ : U → R3, then f : S → R is

smooth if and only if f ◦ σ : U → R is smooth. We must check that, if

σ̃ : Ũ → R3 is another patch covering S, then f ◦ σ̃ is smooth if and only

if f ◦ σ is smooth. This is true because f ◦ σ̃ = (f ◦ σ) ◦ Φ, where Φ is

the transition map from σ to σ̃, and both Φ and Φ−1 are smooth. The

last part is true because if σ : U → R3 is a smooth map, where U is an

open subset of R2, then each component of σ (which is a map U → R)

is smooth (this is because a vector function such as σ is differentiated

‘componentwise’).

4.3.2 f is not a diffeomorphism as it is not injective because: f(0, y, z) =

f(0, y, z + 2π). Take an atlas for the cone consisting of the patches

σ(u, v) = (u cos v, u sin v, u), defined on the open sets U1 = {(u, v)|u > 0,
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0 < v < 2π} and U2 = {(u, v)|u > 0,−π < v < π} (call these σ1 and

σ2), and parametrize the half-plane by π(u, v) = (0, u, v) with u > 0. If

(0, a, b) is any point in the plane, assume first that b is not an even

multiple of π, say 2nπ < b < 2(n + 1)π for some integer n. Then,

f(π(u, v)) = σ1(u, v − 2nπ) if 2nπ < v < 2(n + 1)π. So f is a dif-

feomorphism from the open subset {(0, y, z)|2nπ < z < 2(n + 1)π} of

the half-plane to the cone with the half-line y = 0, x = z > 0 removed.

Similarly if b is not an odd multiple of π. This proves that f is a local

diffeomorphism.

4.4.1 (i) At (1, 1, 0), σu = (1, 0, 2), σv = (0, 1,−2) so σu ×σv = (−2, 2, 1) and

the tangent plane is −2x+2y+z = 0. (ii) At (1, 0, 1), where r = 1, θ = 0,

σr = (1, 0, 2),σθ = (0, 1, 2) so σr ×σθ = (−2,−2, 1) and the equation of

the tangent plane is −2x− 2y + z = 0.

4.4.2 Let σ̃(ũ, ṽ) be a reparametrization of σ. Then, σu = ∂ũ
∂u σ̃ũ + ∂ṽ

∂u σ̃ṽ,

σv = ∂ũ
∂v σ̃ũ+

∂ṽ
∂v σ̃ṽ, so σu and σv are linear combinations of σ̃ũ and σ̃ṽ.

Hence, any linear combination of σu and σv is a linear combination of

σ̃ũ and σ̃ṽ. The converse is also true since σ is a reparametrization of σ̃.

4.4.3 If γ(t) = (x(t), y(t), z(t)) then d
dtF (γ(t)) = Fxẋ + Fy ẏ + Fz ż = ∇F · γ̇.

Since ∇SF − ∇F is perpendicular to TpS, it is perpendicular to γ̇(t0)

for every curve γ on S passing through p when t = t0. It follows that

∇SF · γ̇ = ∇F · γ̇ at p. If the restriction of F to S has a local maximum

or a local minimum at p, so does F (γ(t)) for all curves γ on S passing

through p, hence d
dtF (γ(t)) = 0 at p, which implies that ∇F is perpen-

dicular to γ̇, and hence perpendicular to the tangent plane of S at p.

This means that ∇SF = 0.

4.4.4 d(f ◦ γ))/dt = Dγ(t)f(γ̇(t)) is non-zero because γ̇ is non-zero (γ is reg-

ular) and Dγ(t)f is invertible (Proposition 4.4.6).

4.5.1 The transition map Φ(t, θ) = (t̃, θ̃) is defined on the union of the rect-

angles given by 0 < θ < π and π < θ < 2π (and −1/2 < t < 1/2).

Obviously Φ(t, θ) = (t, θ) if 0 < θ < π. If π < θ < 2π, we must have

θ̃ = θ− 2π. Since sin θ̃
2 = − sin θ

2 , cos
θ̃
2 = − cos θ

2 , σ(t, θ) = σ̃(t̃, θ̃) forces

t̃ = −t. So Φ(t, θ) = (t, θ) if 0 < θ < π, and = (−t, θ− 2π) if π < θ < 2π.

The Jacobian determinant is +1 on the first rectangle, −1 on the second.

4.5.2 Let {σα : Uα → R3} be an atlas for S such that the transition map

Φαβ between σα and σβ satisfies det(J(Φαβ)) > 0 for all α, β (Defini-

tion 4.5.1). By Proposition 4.3.1, {f ◦ σα} is an atlas for S̃, and the

transition maps for this atlas are the same as those for the atlas of S,
because (f ◦σβ)

−1◦(f ◦σα) = σ−1
β ◦σα (where this composite is defined).

So the atlas {f ◦ σα} gives S̃ the structure of an oriented surface.
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Chapter 5

5.1.1 fx = 2x, fy = 2y and fz = 4z3 vanish simultaneously only when x = y =

z = 0, but this does not satisfy x2 + y2 + z4 = 1. So by Theorem 5.1.1

this is a smooth surface. (ii) Let f(x, y, z) be the left-hand side minus

the right-hand side; then, fx = 4x(x2 + y2 + z2 − a2 − b2), fy = 4y(x2 +

y2 + z2 − a2 − b2), fz = 4z(x2 + y2 + z2 + a2 − b2); if fz = 0 then

z = 0 since x2 + y2 + z2 + a2 − b2 > 0 everywhere on the torus; if

fx = fy = 0 too, then since the origin is not on the torus, we must

have x2 + y2 = a2 + b2, but then substituting into the equation of the

torus gives (2a2)2 = 4a2(a2 + b2), a contradiction. For the last part,

let σ(θ, ϕ) = (x, y, z) be the parametrization in Exercise 4.2.5. Then,

x2 + y2 + z2 + a2 − b2 = 2a(a + b cos θ), so (x2 + y2 + z2 + a2 − b2)2 =

4a2(a+ b cos θ)2 = 4a2(x2 + y2). Conversely, if (x, y, z) satisfies the given

equation, let r =
√

x2 + y2. A little algebra gives (r2 + z2 − a2 − b2)2 =

4a2(b2 − z2). Hence, |z| ≤ b so z = b sin θ for some θ ∈ R. Then we find

r2 = a2 + b2 cos2 θ ± 2ab cos θ, so (since r ≥ 0) r = a ± b cos θ. With

the plus sign (x, y, z) = σ(θ, ϕ) for some ϕ ∈ R; with the minus sign,

(x, y, z) = σ(π − θ, ϕ) for some ϕ. Thus, the image of σ : R2 → R3

coincides with the set of solutions to the given equation.

5.1.2 See the solution of Exercise 4.4.3 for the first part. Since S has a (smooth)

choice of unit normal ∇f ‖ ∇f ‖ at each point, it is orientable. The

solution of Exercise 4.4.3 also shows that if the restriction of F to S has

a local maximum or a local minimum at p, then ∇F is perpendicular to

the tangent plane of S at p. But ∇f is also perpendicular to the tangent

plane. Hence, if the restriction of F to S has a local maximum or a local

minimum at p, then ∇F is parallel to ∇f at p, i.e., ∇F = λ∇f for

some scalar λ.

5.1.3 Let f(x, y, z) = xyz−1, F (x, y, z) = x2+y2+z2. Then, f = 0 is a smooth

surface S by Theorem 5.1.1 and F defines a smooth function on S. To
see that F has a smallest value on S, let B be the closed ball given by

x2+y2+z2 ≤ 3. Then, B∩S is compact as it is closed and bounded and it

is non-empty because it contains the point (1, 1, 1). Hence, the continuous

positive function F must attain its lower bound, say ℓ, on B∩S, and ℓ ≤ 3

since F (1, 1, 1) = 3. Obviously F (x, y, z) > 3 if (x, y, z) /∈ B, so ℓ is the

smallest value of F on S.
By Exercise 5.1.3, the local maxima or minima of F on S occur where

(2x, 2y, 2z) = λ(yz, xz, xy) for some λ. Since xyz = 1 on S this gives

x2 = y2 = z2 = λ/2, so x, y, z are equal up to sign. Since their product is
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1, there are four possibilities: (x, y, z) = (1, 1, 1), (1,−1,−1), (−1, 1,−1)

or (−1,−1, 1). The value of F is 3 at each of these points, which is the

smallest value of F on S from above. The distance between any two of

these points of R3 is the same (2
√
2), so they form the vertices of a regular

tetrahedron.

5.2.1 (i) (p cosu cos v, q cosu sin v, r sinu) (cf. Exercise 4.2.4); (ii) see Exercise

4.1.3; (iii) (u, v,±
√

1 + u2

p2 + v2

q2 ); (iv), (v), (vi) see Exercise 4.2.1;

(vii) (p cosu, q cosu, v); (viii) (±p coshu, q sinhu, v); (ix) (u, u2/p2, v);

(x) (0, u, v); (xi) (±p, u, v).

5.2.2 In the notation of Theorem 5.2.2, A =

⎛

⎝

1 −1/3 0

−1/3 1 0

0 0 −2

⎞

⎠. The

eigenvalues are 2/3, 4/3,−2 and the corresponding unit eigenvectors are

the columns of P =

⎛

⎝

1/
√
2 −1/

√
2 0

1/
√
2 1/

√
2 0

0 0 1

⎞

⎠. If

⎛

⎝

x′

y′

z′

⎞

⎠ = P

⎛

⎝

x

y

z

⎞

⎠,

then z′ = z and the quadric becomes 2
3x

′2 + 4
3y

′2 − 2z′
2
+ 4z′ = c, i.e.,

2
3x

′2 + 4
3y

′2 − 2(z′ − 1)2 = c− 2. Comparing with the standard forms in

Theorem 5.2.2 gives the stated results when c > 2 and c < 2. If c = 2

we have a cone with axis the z-axis (which is the same as the z′-axis),

vertex at x′ = y′ = 0, z′ = 1, i.e., x = y = 0, z = 1, and cross-section

perpendicular to the z-axis an ellipse 2
3x

′2 + 4
3y

′2 = constant.

5.2.3 Substituting the components (x, y, z) of γ(t) = a+ tb into the equation

of the quadric gives a quadratic equation for t; if the quadric contains

three points on the line, this quadratic equation has three roots, hence is

identically zero, so the quadric contains the whole line.

For the second part, take three points on each of the given lines; sub-

stituting the coordinates of these nine points into the equation of the

quadric gives a system of nine homogeneous linear equations for the ten

coefficients a1, . . . , c of the quadric; such a system always has a non-trivial

solution. By the first part, the resulting quadric contains all three lines.

5.2.4 Let L1, L2, L3 be three lines from the first family; by the preceding exer-

cise, there is a quadric Q containing all three lines; all but finitely many

lines of the second family intersect each of the three lines; if L′ is such

a line, Q contains three points of L′, and hence the whole of L′ by the

preceding exercise; so Q contains all but finitely many lines of the second

family; since any quadric is a closed subset of R3, Q must contain all the

lines of the second family, and hence must contain S.
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5.3.1 From Example 5.3.2, the surface can be parametrized by σ(u, v) =

(coshu cos v, coshu sin v, u), with u ∈ R and −π < v < π or 0 < v < 2π.

5.3.2 ‖ σ(u, v) ‖2 = sech2u(cos2 v+sin2 v) + tanh2u = sech2u+tanh2u = 1, so

σ parametrizes an open subset of S2; σ is clearly smooth; and σu×σv =

−sech2uσ(u, v) is never zero, so σ is regular. Meridians correspond to the

parameter curves v = constant, and parallels to the curves u = constant.

5.3.3 (i) γ̃ · a = 0 so γ̃ is contained in the plane perpendicular to a and

passing through the origin; (ii) simple algebra; (iii) ṽ is clearly a smooth

function of (u, v) and the Jacobian matrix of the map (u, v) Z→ (u, ṽ) is
(

1 0

γ̇ · a 1

)

, where a dot denotes d/du; this matrix is invertible so γ̃ is

a reparametrization of γ.

5.3.4 σu = γ̇ + vδ̇,σv = δ (a dot denotes d/du) so δ̇(u) is perpendicular

to the surface at σ(u, v) ⇐⇒ δ̇ · (γ̇ + vδ̇) = 0, δ̇ · δ = 0. The second

equation follows from ‖ δ ‖= 1 so the two conditions are satisfied ⇐⇒
v = −(γ̇ · δ̇)/ ‖ δ̇ ‖2. Hence, Γ(u) = γ − (γ̇ · δ̇)δ/ ‖ δ̇ ‖2. Using δ̇ · δ = 0

again, Γ̇ · δ̇ = γ̇ · δ̇ − (γ̇ · δ̇)δ̇ · δ̇/ ‖ δ̇ ‖2= 0.

5.4.1 Both surfaces are closed subsets of R3, as they are of the form

f(x, y, z) = 0, where f : R3 → R is a continuous function (equal to

x2−y2+z4−1 and x2+y2+z4−1 in the two cases). The surface in (i) is

not bounded, and hence not compact, since it contains the point (1, a2, a)

for all real numbers a; that in (ii) is bounded, and hence compact, since

x2 + y2 + z4 = 1 =⇒ −1 ≤ x, y, z ≤ 1.

The surface in (ii) is obtained by rotating the curve x2 + z4 = 1 in the

xz-plane around the z-axis:
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5.4.2 A closed curve γ with period T can be identified with the unit circle by

γ(t) [→ (cos(2πt/T ), sin(2πt/T )). This gives rise to a diffeomorphism from

the tube around γ to a tube around the circle, i.e., a torus. We have to

make the tube have a sufficiently small radius to avoid self-intersections.

5.5.1 Both parts are geometrically obvious.

5.5.2 Let (a, b, c) ∈ R3 with a and b non-zero. Then Ft(a, b, c) → ∞ as t → ∞
and as t approaches p2 and q2 from the left; and Ft(a, b, c) → −∞ as

t → −∞ and as t approaches p2 and q2 from the right. From this and

the fact that Ft(a, b, c) = 0 is equivalent to a cubic equation for t, it

follows that there exist unique numbers u, v, w with u < p2, p2 < v < q2

and q2 < w such that Ft(a, b, c) = 0 when t = u, v or w. The sur-

faces Fu(x, y, z) = 0 and Fw(x, y, z) = 0 are elliptic paraboloids and

Fv(x, y, z) = 0 is a hyperbolic paraboloid, and we have shown that

there is one surface of each type passing through each point (a, b, c).

To parametrize these surfaces, write Ft(x, y, z) = 0 as the cubic equation

x2(q2−t)+y2(p2−t)−2z(p2−t)(q2−t)+t(p2−t)(q2−t) = 0, and note that

the left-hand side must be equal to (t−u)(t−v)(t−w); putting t = p2, q2

and then equating coefficients of t2 (say) gives x = ±
√

(p2−u)(p2−v)(p2−w)
q2−p2 ,

y = ±
√

(q2−u)(q2−v)(q2−w)
p2−q2 , z = 1

2 (u + v + w − p2 − q2).

5.6.1 Let F : W → V be the smooth bijective map constructed in the proof of

Proposition 4.2.6. Then, (u(t), v(t)) = F−1(γ(t)) is smooth.

5.6.2 Suppose, for example, that fy �= 0 at (x0, y0). Let F (x, y) = (x, f(x, y));

then F is smooth and its Jacobian matrix

(

1 fx
0 fy

)

is invertible at

(x0, y0). By the inverse function theorem, F has a smooth inverse G

defined on an open subset of R2 containing F (x0, y0) = (x0, 0), and G

must be of the form G(x, z) = (x, g(x, z)) for some smooth function g.

Then γ(t) = (t, g(t, 0)) is a parametrization of the level curve f(x, y) = 0

containing (x0, y0).

The matrix

(

fx fy fz
gx gy gz

)

has rank 2 everywhere; suppose that, at

some point (x0, y0, z0) on the level curve, the 2×2 submatrix

(

fy fz
gy gz

)

is invertible. Then, the function F (x, y, z) = (x, f(x, y, z), g(x, y, z))
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is smooth and its Jacobian matrix

⎛

⎝

1 0 0

fx fy fz
gx gy gz

⎞

⎠ is invertible at

(x0, y0, z0). Let G(x, u, v) = (x,ϕ(x, u, v), ψ(x, u, v)) be the smooth in-

verse of F defined near (x0, 0, 0). Then γ(t) = (t,ϕ(t, 0, 0), ψ(t, 0, 0)) is

a parametrization of the level curve f(x, y, z) = g(x, y, z) = 0 containing

(x0, y0, z0).

5.6.3 Let σ(u, v) = (f(u, v), g(u, v), h(u, v)). The condition σu × σv �= 0 at

(u0, v0) means that the matrix

⎛

⎝

fu fv
gu gv
hu hv

⎞

⎠ has rank 2 at (u0, v0), so

at least one 2 × 2 submatrix is invertible, say

(

fu fv
gu gv

)

. If F (u, v) =

(f(u, v), g(u, v)), then as in the proof of Proposition 4.2.6 there is an open

subset V of R2 containing F (u0, v0) and an open subsetW of U containing

(u0, v0) such that F : W → V is bijective, in particular injective. Then

the restriction of σ to W is injective.

5.6.4 Let σ(u, v) = (f(u, v), g(u, v), h(u, v)). The condition that N(u0, v0) is

not parallel to the xy-plane means that the matrix

(

fu fv
gu gv

)

is in-

vertible at (u0, v0). If F (u, v) = (f(u, v), g(u, v)), then as in the proof of

Proposition 4.2.6 there is an open subset V of R2 containing F (u0, v0)

and an open subset W of U containing (u0, v0) such that F : W → V is

bijective with smooth inverse. If F−1(u, v) = (α(u, v), β(u, v)), then near

(x0, y0, z0) the surface coincides with the graph z = h(α(x, y), β(x, y)). If

N(u0, v0) is parallel to the xy-plane, then at least one of the other two

2×2 submatrices of the Jacobian matrix of σ(u, v) is invertible, and then

the surface coincides near (x0, y0, z0) with a graph of the form x = ϕ(y, z)

or y = ϕ(x, z).

Chapter 6

6.1.1 (i) Quadric cone x2 + z2 = y2; σu = (coshu sinh v, coshu cosh v, coshu),

σv = (sinhu coshv, sinhu sinh v, 0), ‖ σu ‖2= 2 cosh2 u cosh2 v, σu ·σv =

2 sinhu coshu sinh v cosh v, ‖ σv ‖2= sinh2 u cosh2v, and the first fun-

damental form is 2 cosh2 u cosh2 v du2 + sinh 2u sinh 2v dudv + sinh2 u

cosh 2v dv2.

(ii) Paraboloid of revolution; (2 + 4u2) du2 + 8uv dudv + (2 + 4v2) dv2.
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(iii) Hyperbolic cylinder; (cosh2 u+ sinh2 u) du2 + dv2.

(iv) Paraboloid of revolution; (1 + 4u2) du2 + 8uv dudv + (1 + 4v2) dv2.

6.1.2 Applying a translation to a surface patch σ does not change σu or σv.

If P is a 3 × 3 orthogonal matrix, (Pσ)u = P (σu), (Pσ)v = P (σv),

and P preserves dot products (P (p) · P (q) = p · q for all vectors p,q ∈
R3). Applying the dilation (x, y, z) \→ a(x, y, z), where a is a non-zero

constant, multiplies σ by a and hence the first fundamental form by a2.

6.1.3 Since both sides define bilinear forms on the tangent plane, it suffices to

prove that the two sides agree when v,w belong to the basis {σu,σv}.

This is easily checked using du(σu) = dv(σv) = 1, du(σv) = dv(σu) = 0.

6.1.4 By the chain rule, σ̃ũ = σu
∂u
∂ũ + σv

∂v
∂ũ , σ̃ṽ = σu

∂u
∂ṽ + σv

∂v
∂ṽ , which gives

Ẽ = σ̃ũ.σ̃ũ = E
(

∂u
∂ũ

)2
+ 2F ∂u

∂ũ
∂v
∂ũ + G

(

∂v
∂ũ

)2
. Similar expressions for

F̃ and G̃ can be found; multiplying out the matrices shows that these

formulas are equivalent to the matrix equation in the question. Following

the procedure given, Edu2 + 2Fdudv + Gdv2 = E
(

∂u
∂ũdũ+ ∂u

∂ṽ dṽ
)2

+

2F
(

∂u
∂ũdũ+ ∂u

∂ṽ dṽ
) (

∂v
∂ũdũ+ ∂v

∂ṽdṽ
)

+ G
(

∂v
∂ũdũ + ∂v

∂ṽdṽ
)2
. The coefficient

of dũ2 is E
(

∂u
∂ũ

)2
+2F ∂u

∂ũ
∂v
∂ũ +G

(

∂v
∂ũ

)2
, which agrees with the expression

for Ẽ found above. Similarly for F̃ and G̃.

6.1.5 (i) ⇐⇒ (ii): Ev = Gu = 0 ⇐⇒ σu · σuv = σv · σuv = 0 ⇐⇒ σuv

is parallel to N. Consider the quadrilateral bounded by the parameter

curves u = u0, u = u1, v = v0, v = v1. The length of the side given by

u = u0 is
∫ v1
v0

‖ (σv(u0, v) ‖ dv =
∫ v1
v0

√

G(u0, v)dv. (i) =⇒ (iii): If

Gu = 0, G depends only on v so this integral is unchanged when u0 is

replaced by u1. So the two sides u = u0 and u = u1 have the same length;

and similarly for the other two sides. (iii) =⇒ (i): If the lengths are equal

then
∫ v1
v0

√

G(u, v)dv is independent of u; differentiating with respect to

u gives
∫ v1
v0

Gu

2
√
G
dv = 0 for all v0, v1, so Gu = 0; and similarly Ev = 0.

Assuming conditions (i)–(iii) are satisfied, define ũ =
∫ √

E(u) du,

ṽ =
∫ √

G(v) dv. Then, (u, v) \→ (ũ, ṽ) is a reparametrization map

because its Jacobian matrix

(
√
E 0

0
√
G

)

has non-zero determinant

√
EG. The first fundamental form of the reparametrization σ̃(ũ, ṽ)

of σ(u, v) is dũ2 + 2F√
EG

dũdṽ + dṽ2. Since EG − F 2 > 0, we have

−1 < 2F√
EG

< 1 so there is a smooth function θ(ũ, ṽ) with 0 < θ < π

such that cos θ = 2F√
EG

. This gives the first fundamental form as

dũ2 + 2 cos θdũdṽ + dṽ2.
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Since ũ = 1
2 (û+ v̂), ṽ = 1

2 (û− v̂), the first fundamental form becomes

1

4
(dû + dv̂)2 +

1

2
cos θ(dû2 − dv̂2) +

1

4
(dû − dv̂)2

=
1

2
(1 + cos θ)dû2 +

1

2
(1 − cos θ)dv̂2 = cos2

θ

2
dû2 + sin2

θ

2
dv̂2.

6.2.1 The map is σ(u, v) ]→
(

u
√
2 cos v√

2
, u

√
2 sin v√

2
, 0
)

= σ̃(u, v), say. The

image of this map is the sector of the xy-plane whose polar coordinates

(r, θ) satisfy 0 < θ < π
√
2. The first fundamental form of σ is 2 du2 +

u2 dv2; σ̃u =
(√

2 cos v√
2
,
√
2 sin v√

2
, 0
)

,σ̃v =
(

−u sin v√
2
, u cos v√

2
, 0
)

, so

‖ σ̃u ‖2= 2, σ̃u · σ̃v = 0, ‖ σ̃v ‖2= u2 and the first fundamental form of

σ̃ is also 2 du2 + u2 dv2.

6.2.2 No: the part of the ruling (t, 0, t) with 1 ≤ t ≤ 2 (say) has length
√
2 and

is mapped to the straight line segment (t, 0, 0) with 1 ≤ t ≤ 2, which has

length 1.

6.2.3 A straightforward calculation shows that the first fundamental form of

σt is cosh2 u(du2 + dv2); in particular, it is independent of t. Hence,

σ(u, v) → σt(u, v) is an isometry for all t. Taking t = π/2 gives the

isometry from the catenoid to the helicoid; under this map, the parallels

u = constant on the catenoid go to circular helices on the helicoid, and

the meridians v = constant go to the rulings of the helicoid.

6.2.4 The line of striction is given by v = −(γ̇ · δ̇)/ ‖ δ̇ ‖2 (Exercise 5.3.4),

where in this case δ = γ̇. Since γ is unit-speed, γ̇ · γ̈ = 0 so v = 0

and we get the curve γ itself. For the second part, we can assume that

u0 = 0 and by applying an isometry of R3 that γ(0) = 0, t(0) = i,n(0) =

j,b(0) = k (in the usual notation). Then, using Frenet-Serret, γ̈(0) =

^(0)j,
...
γ (0) = (−^(0)2, ˙̂ (0)_ ^(0)τ(0)) so, neglecting higher powers of u

in each component, γ(u) = γ(0) + u · γ(0) + 1
2 γ̈(0)u

2 + 1
6

...
γ (0)u3 + · · · =

(u, 1
2^(0)u

2, 1
6^(0)τ(0)u

3). The intersection of the surface with the plane

perpendicular to t(0) = i is given by setting the x-component of σ(u, v)

equal to zero. This gives v = −u+ higher terms, so neglecting such terms,

u = −v. Then the intersection is Γ(v) = σ(−v, v) = γ(−v) + vγ̇(−v) =

(0,− 1
2^(0)v

2, 1
3^(0)τ(0)v

3).

6.3.1 If the first fundamental forms of two surfaces are equal, they are certainly

proportional, so any isometry is a conformal map. Stereographic projec-

tion is a conformal map from S2 to the plane, but it is not an isometry

since λ �= 1 (see Example 6.3.5).

6.3.2 The first fundamental form of the given surface patch is (1 + u2 + v2)2

(du2 + dv2); this is a multiple of du2 + dv2 so the patch is conformal.
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6.3.3 The first fundamental form of σ̃(u, v) is
(

dψ
du

)2

du2+cos2 ψ(u)dv2. So σ̃ is

conformal ⇐⇒ dψ/du = ± cosψ. Taking the plus sign, u =
∫

secψdψ =

ln(secψ + tanψ), so 1+sinψ
cosψ = eu. Then 2 coshu = eu + e−u = 1+sinψ

cosψ +
cosψ

1+sinψ = 2 secψ. Hence, cosψ = sechu, sinψ = tanhu and σ̃(u, v) is the

patch in Exercise 5.3.2.

6.3.4 Φ is conformal if and only if f2
u + g2u = f2

v + g2v and fufv + gugv = 0.

Let z = fu + igu, w = fv + igv; then Φ is conformal if and only if

zz̄ = ww̄ and zw̄ + z̄w = 0, where the bar denotes complex conjugate;

if z = 0, then w = 0 and all four equations are certainly satisfied; if

z �= 0, the equations give z2 = −w2, so z = ±iw; these are easily seen

to be equivalent to the first pair of equations in the statement of the

exercise if the sign is +, and to the second pair if the sign is −. We have

det(J(Φ)) =

∣

∣

∣

∣

fu gu
fv gv

∣

∣

∣

∣

= ±(f2
u + f2

v ), with a plus sign if the first pair of

equations hold and a minus sign if the second pair of equations hold.

6.3.5 Let S be an orientable surface. Fix a smooth choice of unit normal at

each point of S, and let A be the atlas for S consisting of all the surface

patches for S whose standard unit normal agrees with the chosen normal.

On the other hand, by Theorem 6.3.6 S has an atlas consisting of confor-

mal parametrizations; let Ã be the maximal such atlas (i.e., the set of all

conformal parametrizations of S). Then, A∩ Ã is an atlas for S. Indeed,
if p ∈ S, let σ be any conformal parametrization of S containing p. If

σ has the wrong orientation (so that σ /∈ Ã), then σ̃(u, v) = σ(−u, v)

is a conformal parametrization containing p that has the correct orien-

tation. Thus, in any case there is a surface patch of S containing p that

is both conformal and correctly oriented. Let Φ be the transition map

between two of the patches in the atlas A ∩ Ã. Then, Φ is a conformal

diffeomorphism between open subsets of R2. By Exercise 6.3.4, Φ is either

holomorphic or anti-holomorphic, and in the latter case det(J(Φ)) < 0,

contradicting the fact that Φ is the transition map between two correctly

oriented surface patches. Hence, Φ must be holomorphic.

6.3.6 Following Example 6.3.5, we find Π̃(x, y, z) = ( x
z+1 ,

y
z+1 , 0). Identifying

(u, v) ∈ R2 with w = u + iv ∈ C, we find σ̃1(w) = ( 2w
|w|2+1 ,

1−|w| 2

1+|w| 2 ).

Then σ1(w) = σ̃1(1/w̄), so the transition map is w → 1/w̄. This is not

holomorphic, so the atlas {σ1, σ̃1} does not give S2 the structure of a

Riemann surface. If σ̂1(w) = σ̃1(w̄), the transition map between σ1 and

σ̂1 is w → 1/w. This is holomorphic (when w �= 0, which holds on the

overlap of the two patches), so the atlas {σ1, σ̂1} gives S2 the structure

of a Riemann surface.
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6.3.7 Any circle on S2 is the intersection of S2 with a plane, and so (see

Appendix 2) has equation of the form aw + āw̄ + bz = c, where a ∈ C,

b, c ∈ R are constants (and a and b are not both zero). Substituting

w = 2ξ
|ξ|2+1 , z = |ξ|2−1

|ξ|2+1 gives (b − c)|ξ|2 + 2aξ + 2āξ̄ = b + c, which is

the equation of a Circle in C` (a line if b = c, a circle otherwise). The

converse is proved similarly.

6.3.8 The expression of the map Π−1 ◦M ◦Π in terms of the atlas {σ1, σ̃1} of

S2 in Exercise 6.3.6, which consists of conformal patches, is of the form

w a→ M(w), w a→ M(1/w̄), w a→ M(w)
−1

, or w a→ M(1/w̄)
−1

, i.e., a

Möbius or conjugate-Möbius transformation. Since such transformations

are conformal (Appendix 2), the result follows.

6.4.1 Parametrize the paraboloid by σ(u, v) = (u, v, u2+v2); its first fundamen-

tal form is (1 + 4u2)du2 + 8uv dudv + (1 + 4v2)dv2. Hence, the required

area is
∫√

1 + 4(u2 + v2) dudv, taken over the disc u2 + v2 < 1. Let

u = r sin θ, v = r cos θ; then the area is 2π
∫ 1

0

√
1 + 4r2r dr = π

6 (5
3/2− 1).

This is less than the area 2π of the hemisphere.

6.4.2 If S is a sphere with centre the origin and radius R, the map S2 → S
given by p → Rp multiplies the first fundamental form by R2, and so is

conformal but multiplies areas by R2. It follows from Theorem 6.4.7 that

the sum of the angles of a spherical triangle of area A on S is π+A/R2.

In this case, R is the radius of the earth and A is ≥ the area of Australia,

so the sum of the angles is ≥ π+(7,500, 000)/(6,500)2 = π+ 30
169 radians.

Hence, at least one angle of the triangle must be at least one third of

this, i.e., π + 10
169 radians.

6.4.3 Take a point p inside the polygon and join it to each vertex of the polygon

by an arc of a great circle. This gives n triangles whose sides are arcs of

great circles. The sum of their angles is the sum of their areas (i.e., the

area of the polygon) minus nπ by Theorem 6.4.7, and is also the sum of

the angles of the polygon plus 2π (the angle around p).

6.4.4 The sum of the angles around any vertex is 2π, so the sum of the angles

of all the polygons is 2πV . By the preceding exercise, the sum of the

angles of a polygon with n sides is (n − 2)π plus its area. Summing

over all polygons gives 2πV = 4π +
∑

polygons(n − 2)π, since the sum

of the areas of all the polygons is the area 4π of the sphere. Since two

polygons meet along each edge,
∑

polygons n = 2E, and since there are F

polygons altogether, we get 2πV = 2πE − 2πF + 4π, which is equivalent

to V − E + F = 2.

6.4.5 (i) is obvious as a local isometry preserves E,F,G and hence
√
EG− F 2.

If Ẽ = bc, F̃ = be and G̃ = bf, and if ẼG̃ − F̃ 2 = EG − F 2, then



Solutions 429

λ2 = 1 and so λ = 1 (as E, Ẽ are > 0). This proves (ii). The map from

S2 to the unit cylinder in the proof of Theorem 6.4.6 is an equiareal map

that is not a local isometry.

6.4.6 Let σ : U → R3; f is equiareal ⇐⇒
∫

R
(E1G1 − F 2

1 )
1/2 dudv =

∫

R(E2G2 − F 2
2 )

1/2 dudv for all regions R g U . This holds ⇐⇒ the two

integrands are equal everywhere, i.e., ⇐⇒ E1G1 − F 2
1 = E2G2 − F 2

2 .

6.4.7 Since N is perpendicular to the tangent plane, N× σu is parallel to the

tangent plane, and so = ασu+βσv for some α, β. Now (N×σu) ·σu = 0,

(N × σu) · σv = (σu × σv) · N = ‖ σu × σv ‖ N · N =
√
EG− F 2 by

Proposition 6.4.2. This gives the two equations αE+βF = 0, αF +βG =√
EG− F 2, which imply α = −F/

√
EG− F 2, β = E/

√
EG− F 2. The

formula for N× σv is proved similarly.

6.5.1 If the internal angles are equal to α, Theorem 6.4.7 gives 3α− π = 4π/4,

so α = 2π/3. Corollary 6.5.6 then gives the length of a side as A =

cos−1(−1/3).

6.5.2 Using the notation following Proposition 6.5.8, there is a rotation R1 of

S2 that takes a′ to a; then a further rotation R2 around the diameter

through a that makes the side through a and R1(b
′) coincide with the

side through a and b. By Corollary 6.5.6 the two triangles have sides

of the same length, so we must have b = R2R1(b
′). If c and c′ are

on the same side of the plane containing the side through a and b, we

shall then have c = R2R1(c
′) and the isometry R2R1 takes the triangle

with vertices a′,b′, c′ to the triangle with vertices a,b, c; if they are on

opposite sides the isometry R3R2R1 does this, where R3 is reflection in

the plane containing the side through a and b.

6.5.3 By applying an isometry of R3, which leaves lengths and areas unchanged,

we can assume that p is the north pole (0, 0, 1). The spherical circle

of radius R and centre p is then the circle of latitude ϕ = π/2 − R

(Example 4.1.4), which is a circle of radius sinR. The area inside it is, by

Example 6.1.3 and Proposition 6.4.2,
∫ 2h
0

∫ hi2
hi2−R

cos θdθdϕ=2π(1−cosR).

The maximum value of R is π; if π/2 ≤ R ≤ π, one replaces R by π −R

in (i) and (ii).

6.5.4 (i) If M ′(w) = a′w+b′

c′w+d′ is another unitary Möbius transformation, then

(M ′ ◦ M)(w) = Aw+B
Cw+D , where A = a′a + b′c, B = a′b + b′d, C =

c′a + d′c,D = c′b + d′d. Thus, Ā = ā′ā + b̄′c̄ = d′d + (−c′)(−b) = D

and similarly C = −B̄. Inverses are dealt with similarly. (ii) Denoting

(x, y, z) ∈ R3 by (ξ, z) with ξ = x + iy ∈ C, the plane through the ori-

gin perpendicular to (a, b) is w̄a + wā + 2bz = 0, and reflection in it is
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F (ξ, z) = (ξ, z) − 2 w̄a+wā+2bz
|a|2+b2 (a, b). Taking ξ = 2w

|w|2+1 , z = |w2−1
|w|2+1 , we

find that F (ξ, z) = (ξ′, z′), where ξ′ = 2(|a|2+b2)w−2a(w̄a+wā+b(|w|2−1))
(|w|2+1)(|a|2+b2) ,

z′ = (|a|2+b2)(|w|2−1)−2b(w̄a+wā+b(|w|2−1))
(|w|2+1)(|a|2+b2) , which gives w′ = ξ′

1−z′ =
−ab|w|2+b2w−a2w̄+ab
b2|w|2+bāw+baw̄+|a|2 = (−aw̄+b)(bw+a)

(bw̄+ā)(bw+a) = −aw̄+b
bw̄+ā . (iii) By Proposition 6.5.7,

if F is any isometry of S2, Fj = (M1 ◦ J) ◦ (M2 ◦ J) ◦ · · · ◦ (Mk ◦ J) for

some k. Since J◦M◦J is easily seen to be a unitary Möbius transformation

if M is one, part (i) implies that Fj is a unitary Möbius transformation

if k is even, and of the form M ◦ J with M unitary Möbius if k is odd.

(iv) If a ∈ C, b ∈ R, call the unitary Möbius transformation M(w) =
aw+b
−bw+ā special unitary. Then M = Fj ◦ J where F is as in (ii). Since

J = Rj where R is reflection in the yz-plane, M = (F ◦ R)j corre-

sponds to the isometry F ◦ R of S2. It therefore suffices to prove that

every unitary Möbius transformation is a composite of finitely many spe-

cial unitary Möbius transformations. If M ′(w) = Aw+B
−B̄w+Ā

is any unitary

Möbius transformation, where A,B ∈ C, let B = beiθ with b, θ ∈ R. Then

M ′ = ρ◦M ◦ρ−1, where ρ(w) = eiθ and M(w) = Aw+b
−bw+Ā

are both special

unitary Möbius transformations (ρ(w) = aw+b
−bw+ā with a = eiθ/2, b = 0).

Chapter 7

7.1.1 σu = (1, 0, 2u), σv = (0, 1, 2v), so N = λ(−2u,−2v, 1), where λ =

(1 + 4u2 + 4v2)−1/2; σuu = (0, 0, 2), σuv = 0, σvv = (0, 0, 2), so L = 2λ,

M = 0, N = 2λ, and the second fundamental form is 2λ(du2 + dv2).

7.1.2 σu · Nu = −σuu · N (since σu · N = 0), so Nu · σu = 0; similarly,

Nu · σv = Nv · σu = Nv · σv = 0; hence, Nu and Nv are perpendicular

to both σu and σv, and so are parallel to N. On the other hand, Nu and

Nv are perpendicular to N since N is a unit vector. Thus, Nu = Nv = 0,

and hence N is constant. Then, (σ · N)u = σu · N = 0, and similarly

(σ ·N)v = 0, so σ ·N is constant, say equal to d, and then σ is an open

subset of the plane v ·N = d.

7.1.3 From Section 4.5, Ñ = ±N, the sign being that of det(J). From

σ̃ũ = σu
∂u
∂ũ + σv

∂v
∂ũ , σ̃ṽ = σu

∂u
∂ṽ + σv

∂v
∂ṽ , we get

σ̃ũũ = σu
∂2u

∂ũ2
+ σv

∂2v

∂ũ2
+ σuu

(

∂u

∂ũ

)2

+ 2σuv
∂u

∂ũ

∂v

∂ũ
+ σvv

(

∂v

∂ũ

)2

.

So L̃ = ±
(

L
(

∂u
∂ũ

)2
+ 2M ∂u

∂ũ
∂v
∂ũ +N

(

∂v
∂ũ

)2
)

, since σu ·N = σv ·N = 0.

This, together with similar formulas for M̃ and Ñ , are equivalent to the

matrix equation in the question.
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7.1.4 Let σ be a surface patch, P a 3× 3 orthogonal matrix, a ∈ R3 a constant

vector, and σ̃ = Pσ + a. Then, σ̃u = Pσu, σ̃v = Pσv, so σ̃u × σ̃v =

±σu×σv (Proposition A.1.6), the sign being + if the isometry v k→ Pv+a

is direct and − if it is opposite. It follows that (in the obvious notation),

L̃ = ±L, M̃ = ±M, Ñ = ±N . The dilation v k→ av, where a is a non-zero

constant, multiplies σ by a and hence multiplies each of L,M,N by a.

7.2.1 The paraboloid is the level surface f = 0 where f(x, y, z) = z − x2 − y2

and N =
(fx ,fy ,fz )

‖(fx ,fy ,fz )‖
is the corresponding unit normal. So G(x, y, z) =

(−2x,−2y,1)
(4x2+4y2+1)1/2

.

7.2.2 This is obvious since changing the orientation changes the Gauss map G

to −G .

7.3.1 Let t be the parameter for γ, let s be arc-length along γ, and denote

d/dt by a dot and d/ds by a dash. Then, γ̇ = ds
dtγ

′, γ̈ =
(

ds
dt

)2
γ ′ +

d2s
dt2 γ

′. By Proposition7.3.5, ln = mmγ ′,γ′nn = mm 1
(ds/dt) γ̇,

1
(ds/dt) γ̇nn =

mmγ̇, γ̇nn/(ds/dt)2 = mmγ̇, γ̇nn/mγ̇, γ̇n. For the second part, since γ ′ ·
(N× γ′) = 0, we have γ̈ · (N× γ̇) =

(

ds
dt

)3
γ′′ · (N× γ′) = mγ̇, γ̇n3/2lg.

7.3.2 Let γ be a unit-speed curve on the sphere of centre a and radius r.

Then, (γ − a) · (γ − a) = r2; differentiating gives γ̇ · (γ − a) = 0, so

γ̈ · (γ − a) = −γ̇ · γ̇ = −1. At the point γ(t), the unit normal of the

sphere is N = ± 1
r (γ(t)− a), so ln = γ̈ ·N = ± 1

r γ̈ · (γ − a) = ∓ 1
r .

7.3.3 If the sphere has radius R, the parallel with latitude θ has radius

r = R cos θ; if p is a point of this circle, its principal normal at p is parallel

to the line through p perpendicular to the z-axis, while the unit normal

to the sphere is parallel to the line through p and the centre of the sphere.

The angle ψ in Eq. 7.10 is therefore equal to θ or π−θ so κg = ± 1
r sin θ =

± 1
R tan θ. Note that this is zero if and only if the parallel is a great circle.

7.3.4 We have γ̇ = u̇σu + v̇σv, so by Exercise 6.4.7, N × γ̇ =
u̇(Eσv−Fσu)+v̇(Fσv−Gσu)√

EG−F 2
, γ̈ = üσu + v̈σv + u̇2σuu + 2u̇v̇σuv + v̇2σvv.

Hence, κg = γ̈ ·(N×γ̇) = (u̇v̈−v̇ü)
√
EG− F 2+Au̇3+Bu̇2v̇+Cu̇v̇2+Dv̇3,

where A = σuu ·(Eσv−Fσu) = E((σu ·σv)u−σu ·σuv)− 1
2F (σu ·σu)u =

E(Fu − 1
2Ev)− 1

2FEu, with similar expressions for B,C,D.

If F = 0, we find by this method that A = − 1
2Ev

√

E/G, B =

Gu

√

E/G− 1
2Eu

√

G/E, C = 1
2Gv

√

E/G−Ev

√

G/E, D = 1
2Gu

√

G/E.

7.3.5 κ1 = κN1·n, κ2 = κN2·n, so κ1N2−κ2N1 = κ((N1·n)N2−(N2·n)N1) =

κ(N1 × N2) × n. Taking the squared length of each side, we get

κ2
1 + κ2

2 − 2κ1κ2N1 ·N2 = κ2 ‖ (N1 ×N2)×n ‖2. Now, N1 ·N2 = cosα;
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γ̇ is perpendicular to N1 and N2, so N1 × N2 is parallel to γ̇, hence

perpendicular to n; hence,‖ (N1 ×N2)×n ‖= ‖ N1 ×N2 ‖‖ n ‖=sinα.

7.3.6 A straight line has a unit-speed parametrization γ(t) = p + tq (with

q a unit vector), so γ̈ = 0 and hence κn = γ̈ · N = 0. In general,

κn =0 ⇐⇒ γ̈ is perpendicular to N ⇐⇒ N is perpendicular to n ⇐⇒ N

is parallel to b (since N is perpendicular to t).

7.3.7 The second fundamental form is (−du2 + u2 dv2)/u
√
1 + u2, so a curve

γ(t) = σ(u(t), v(t)) is asymptotic if and only if −u̇2 + u2v̇2 = 0, i.e.,

dv/du = v̇/u̇ =±1/u, so lnu =±(v + c), where c is a constant.

7.4.1 ṽ is a smooth function of t and lies in Tγ(ϕ(t))S = Tγ̃(t)S, so ṽ is a

tangent vector field along γ̃. The formula follows from Eq. 7.11 and the

fact that dv
dt = dṽ

dt̃
dϕ
dt , where t̃ = ϕ(t). The last part follows since ϕ̇ �= 0

so ∇γ̃ ṽ = 0 ⇐⇒ ∇γv = 0.

7.4.2 If p and q correspond to the parameter values t = a and t = b, re-

spectively, let Γ(t) = γ(a + b − t) (thus, Γ is γ ‘traversed backwards’).

We show that Πqp
Γ is the inverse of Πpq

γ . Let w ∈ TpS and let v be

the tangent vector field parallel along γ such that v(a) = w. Then,

Πpq
γ (w) = v(b). By Exercise 7.4.1, V(t) = v(a + b − t) is parallel along

Γ so Πqp
Γ (v(b)) = Πqp

Γ (V(a)) = V(b) = v(a) = w. This proves that

Πqp
Γ ◦Πpq

γ is the identity map on TpS. One proves similarly (or by inter-

changing the roles of γ and Γ) that Πpq
γ ◦Πqp

Γ is the identity map on TqS.

7.4.3 Let α, β, γ be the internal angles of the triangle at p,q, r, respectively.

Since the arc through p and q is part of a great circle, the tangent

vector of the arc is parallel along the arc (Exercise 7.4.7). So the result

of parallel transporting v0 to q along the arc pq through p and q is a

vector v1 tangent to pq at q. Now v1 makes an angle π− β with the arc

qr at q, so parallel transporting v1 along qr to r gives a vector v2 which

makes an angle (π − β) + (π − γ) with the arc rp at r. Parallel trans-

porting v2 along rp to p then gives a vector v3 which makes an angle

(π−β)+ (π− γ)+ (π−α) with v0. Since v0,v1,v2,v3 all have the same

length (Proposition 7.4.9(ii)), the result follows from Theorem 6.4.7.

Chapter 8

8.1.1 Parametrize the surface by σ(x, y) = (x, y, f(x, y)). Then, σx = (1, 0, fx),

σy = (0, 1, fy), N = (1 + f2
x + f2

y )
−1/2(−fx,−fy, 1), σxx = (0, 0, fxx),

σxy = (0, 0, fxy), σyy = (0, 0, fyy). This gives E = 1 + f2
x , F = fxfy,
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G = 1 + f2
y and L = (1 + f2

x + f2
y )

−1/2fxx, M = (1 + f2
x + f2

y )
−1/2fxy,

N = (1 + f2
x + f2

y )
−1/2fyy. By Corollary 8.1.3, K =

fx x fy y −f2
x y

(1+f2
x +f2

y )
2 , H =

(1+f2
y )fx x −2fx fy fx y +(1+f2

x )fy y

2(1+f2
x +f2

y )
3/2 .

8.1.2 For the helicoid σ(u, v) = (v cosu, v sinu,ou), σu = (−v sinu, v cosu,o),

σv = (cosu, sinu, 0), N = (o2 + v2)−1/2(−o sinu,o cosu,−v), σuu =

(−v cosu,−v sinu, 0), σuv = (− sinu, cosu, 0), σvv = 0. This gives E =

o2 + v2, F = 0, G = 1 and L = N = 0,M = op
√
o2 + v2. Hence, K =

(LN −M2)/(EG− F 2) = −o2/(o2 + v2)2.

For the catenoid σ(u, v) = (coshu cos v, coshu sin v, u), σu =

(sinh u cos v, sinhu sin v, 1), σv = (− coshu sin v, coshu cos v, 0), N =

sechu(− cos v,− sin v, sinhu), σuu = (coshu cos v, coshu sin v, 0), σuv =

(− sinhu sin v, sinhu cos v, 0), σvv = (− coshu cos v,− coshu sin v, 0).

This gives E = G = cosh2 u, F = 0 and L = −1,M = 0, N = 1. Hence,

K = (LN −M2)/(EG− F 2) = −sech4u.

8.1.3 Since σ is smooth and σu×σv is never zero, N = σu×σv/ ‖ σu×σv ‖ is

smooth. Hence, E,F,G, L,M and N are smooth. Since EG−F 2 > 0 (by

the remark following Proposition 6.4.2), the formulas in Corollary 8.1.3

show that H and K are smooth.

8.1.4 From Example 8.1.5, K = 0 ⇐⇒ δ̇ ·N = 0 ⇐⇒ δ̇ · ((t+ vδ̇)×δ) = 0 ⇐⇒
δ̇ ·(t×δ) = 0. If δ = n, δ̇ = −qt+τb, t×δ = b, so K = 0 ⇐⇒ τ = 0 ⇐⇒
γ is planar (by Proposition 2.3.3). If δ = b, δ̇ = −τn, t × δ = −n, so

again K = 0 ⇐⇒ τ = 0.

8.1.5 The dilation (x, y, z) → (ax, ay, az), where a is a non-zero constant, mul-

tiplies E,F,G by a2 and L,M,N by a, hence H by a−1 and K by a−2

(using Corollary 8.1.3).

8.1.6 This follows immediately from Definition 8.1.1 and the hint.

8.1.7 Suppose that the cone is the union of the straight lines joining points of a

curve C to a vertex v. It is clear that the Gauss map G is constant along

the rulings of the cone, so the image of the cone under G is the same as

the image of C under G, which is a curve.

8.1.8 By Eq. 8.2, the area of σ(R) is
∫

R

‖ Nu ×Nv ‖ dudv =

∫

R

|K| ‖ σu × σv ‖ dudv =

∫

R

|K|dAσ .

8.1.9 Using the parametrization σ in Exercise 4.2.5, we find that E = b2, F = 0,

G = (a + b cos θ)2 and L = b,M = 0, N = (a + b cos θ) cos θ. This gives
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K = cos θ/b(a+b cos θ). It follows that S+ and S− are the annular regions

on the torus given by −π/2 ≤ u ≤ π/2 and π/2 ≤ u ≤ 3π/2, respectively.

S+ S−

It is clear that as a point pmoves over S+ (resp. S−), the unit normal at p

covers the whole of the unit sphere. Hence,
∫

S+ |K|dA =
∫

S− |K|dA = 4π

by the preceding exercise; since |K| = ±K on S±, this gives the result.

8.1.10 ∇uw = wu − (wu · N)N so ∇v(∇uw) = wuv − (wuv · N)N−
(wu · Nv)N − (wu ·N)Nv − (wuv ·N)N + (wuv ·N)N + (wu ·Nv)N+

(wu ·N)(Nv ·N)N = wuv − (wuv ·N)N− (wu ·N)Nv. Interchanging u

and v and subtracting gives the first formula. Replacing w by rw in this

formula gives r{(wv ·N)Nu−(wu ·N)Nv}+rv(w·N)Nu−ru(w·N)Nv =

r{(wv · N)Nu − (wu · N)Nv} since w · N = 0. It is also obvious that

∇v(∇u(w1 + w2)) − ∇u(∇v(w1 + w2)) = (∇v(∇uw1)−∇u(∇vw1)) +

(∇v(∇uw2)−∇u(∇vw2)) for any two tangent vector fields w1,w2.

Now ∇v(∇uσu) −∇u(∇vσu) = (σuv ·N)Nu − (σuu ·N)Nv = MNu −
LNv (in the usual notation). Using Proposition 8.1.2, this is equal to

M(aσu + bσv) − L(cσu + dσv) and using the explicit expressions for

a, b, c, d in Proposition 8.1.2 this becomes K(Eσv − Fσu). Similarly,

∇v(∇uσv)−∇u(∇vσv) = K(−Gσu + Fσv).

If ∇v(∇uw) − ∇u(∇vw) = 0 (*) for all w, then taking w = σu gives

K = 0 since E �= 0, σv �= 0. Conversely, if K = 0 then (*) holds for

w = σu and σv, and hence by the first part of the exercise it holds

for ασu + βσv for all smooth functions α, β of (u, v). But every tangent

vector field w is of this form.

8.2.1 For the helicoid σ(u, v) = (v cosu, v sinu, λu), the first and second

fundamental forms are (λ2 + v2)du2 + dv2 and 2λdudv/
√
λ2 + v2,

respectively. Hence, the principal curvatures are the roots of
∣

∣

∣

∣

∣

−κ(λ2 + v2) s√
s2+v2

s√
s2+v2

−κ

∣

∣

∣

∣

∣

= 0, i.e., κ = ±λ/(λ2 + v2). For the catenoid

σ(u, v) = (coshu cos v, coshu sin v, u), the first and second fundamental
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forms are cosh2 u(du2+ dv2) and −du2+ dv2, so the principal curvatures

are the roots of

∣

∣

∣

∣

−1− t cosh2 u 0

0 1− t cosh2 u

∣

∣

∣

∣

= 0, i.e., t = ±sech2u.

8.2.2 This is obvious, since W(γ̇) = −Ṅ.

8.2.3 γ is a line of curvature ⇐⇒ γ̇ = u̇σu + v̇σn is a principal vector for

all t ⇐⇒
(

L M

L N

)

= t

(

E F

F G

)

for some scalar t. Writing this

matrix equation as two scalar equations and then eliminating t gives

the stated equation. For the second part, if the second fundamental form

is a multiple of the first, the Weingarten map is a scalar multiple of

the identity map, so every tangent vector is principal and every curve

on the surface is a line of curvature. If F = M = 0 the matrices F I

and F II are diagonal, hence so is the matrix F −1
I F II of the Weingarten

map with respect to the basis {σu,σv}. This means that σu and σv are

principal vectors, i.e., that the parameter curves v = constant and u =

constant are lines of curvature. Conversely, if every parameter curve is a

line of curvature, the stated equation must hold if u̇ = 0 and if v̇ = 0.

This gives EM = FL and FN = GM, which imply that (EN − GL)F =

EGM − EGM = 0 and so F = 0 and then GM = 0 so M = 0. If

EN = GL the equation in the exercise implies that every curve is a line

of curvature, so every tangent vector is principal, so (i) holds. Condition

(i) implies that the two principal curvatures are equal everywhere, i.e.,

every point is an umbilic, so σ is an open subset of a plane or a sphere by

Proposition 8.2.9. From Examples 6.1.3 and 7.1.2, the first and second

fundamental forms of a surface of revolution are du2 + f(u)2dv2 and

(ḟ g̈− f̈ ġ)du2 + f ġdv2, respectively. Since the terms dudv are absent, the

vectors σu and σv are principal; but these are tangent to the meridians

and parallels, respectively.

8.2.4 Let N1 be a unit normal of S. Then, K = 0 ⇐⇒ Ṅ1.(t×N1) = 0. Since

Ṅ1 is perpendicular to N1 and N1 is perpendicular to t, this condition

holds ⇐⇒ Ṅ1 is parallel to t, i.e., ⇐⇒ Ṅ1 = −uγ̇ for some scalar u. Now

use Exercise 8.2.2.

8.2.5 Let N1 and N2 be unit normals of the two surfaces; if γ is a unit-speed

parametrization of C, then Ṅ1 = −u1γ̇ for some scalar u1 by Exercise

8.2.2. If C is a line of curvature of S2, then Ṅ2 = −u2γ̇ for some scalar u2,

and then (N1·N2)˙= −u1γ̇ ·N2−u2γ̇ ·N1 = 0, soN1·N2 is constant along

γ, showing that the angle between S1 and S2 is constant. Conversely, if

N1 · N2 is constant, then N1.Ṅ2 = 0 since Ṅ1 · N2 = −u1γ̇ · N2 = 0;

thus, Ṅ2 is perpendicular to N1, and is also perpendicular to N2 as N2

is a unit vector; but γ̇ is also perpendicular to N1 and N2; hence, Ṅ2

must be parallel to γ̇, so there is a scalar u2 (say) such that Ṅ2 = −u2γ̇.
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8.2.6 (i) Differentiate the three equations in (8.5) with respect to w, u and v,

respectively; this gives σuw ·σv +σu ·σvw = 0, σuv ·σw +σv ·σuw = 0,

σvw ·σu+σw ·σuv = 0. Subtracting the second equation from the sum of

the other two gives σu ·σvw = 0, and similarly σv ·σuw = σw ·σuv = 0.

(ii) Since σv ·σw = 0, it follows that the matrix FI for the u = u0 surface

is diagonal (and similarly for the others). Let N be the unit normal of

the u = u0 surface; N is parallel to σv × σw by definition, and hence

to σu since σu, σv and σw are perpendicular; by (i), σvw · σu = 0,

hence σvw ·N = 0, proving that the matrix FII for the u = u0 surface is

diagonal. (iii) By part (ii), the parameter curves of each surface u = u0

are lines of curvature. But the parameter curve v = v0, say, on this surface

is the curve of intersection of the u = u0 surface with the v = v0 surface.

8.2.7 On the open subset of the ellipsoid with z �= 0, we can use the

parametrization σ(x, y) = (x, y, z), where z = ±r
√

1− x2

p2 − y2

q2 . By

Proposition 8.1.2 and the remarks following Proposition 8.2.1, the condi-

tion for an umbilic is that F II = vF I for some scalar v. The formulas in

the solution of Exercise 8.1.1 lead to the equations zxx = w(1+z2x), zxy =

wxxzy, zyy = w(1 + z2y), where w = v
√

1 + z2x + z2y . If x and y are both

non-zero, the middle equation gives w = −1/z, and substituting into the

first equation gives the contradiction p2 = r2. Hence, either x = 0 or

y = 0. If x = 0, the equations have the four solutions

x = 0, y = ±q

√

q2 − p2

q2 − r2
, z = ±r

√

r2 − p2

r2 − q2
.

Similarly, one finds the following eight other candidates for umbilics:

x = ±p

√

p2 − q2

p2 − r2
, y = 0, z = ±r

√

r2 − q2

r2 − p2
,

x = ±p

√

p2 − r2

p2 − q2
, y = ±q

√

q2 − r2

q2 − p2
, z = 0.

Of these 12 points, exactly 4 are real, depending on the relative sizes of

p2, q2 and r2.

If p = q �= r, the only umbilics are the two points (0, 0,±r). If p = q = r

every point of the ellipsoid (now a sphere) is an umbilic.

8.2.8 By Proposition 8.2.3, the principal curvatures are the roots of the

quadratic equation v2 − 2Hκ + K = 0, i.e., H ±
√
H2 −K. If there

are no umbilics, we must have H2 > K, and then the principal curva-

tures are smooth because H and K are (Exercise 8.1.3). The second part

follows from Exercises 6.1.4 and 7.1.3 and Proposition 8.2.6.
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w

v
¼-¼

1

0

8.3.1 (i) Setting ũ = v, ṽ = w = e−u, we have u = − ln ṽ, v = ũ so, in

the notation of Exercise 6.1.4, J =

(

0 − 1
ṽ

1 0

)

. Since J is invert-

ible, (u, v) y→ (v, w) is a reparametrization map. The first fundamen-

tal form in terms of v, w is given by

(

Ẽ F̃

F̃ G̃

)

= J t

(

E F

F G

)

J =

(

0 1

− 1
ṽ 0

)(

1 0

0 f(u)2

)(

0 − 1
ṽ

1 0

)

=

(

1
w2 0

0 1
w2

)

, so the first

fundamental form is (dv2 + dw2)/w2.

(ii) We find that the matrix J̃ =

(

∂v
∂V

∂v
∂W

∂w
∂V

∂w
∂W

)

=

(

v(w + 1) 1
2 (v

2 − (w + 1)2)

− 1
2 (v

2 − (w + 1)2) v(w + 1)

)

, so the first fundamental

form matrix in terms of V and W is J̃ t

(

1
w2 0

0 1
w2

)

J̃ = (v2+(w+1)2)2

4w2 I =

4
(1−V 2−W 2)2 I, after some tedious algebra.

In (i), u < 0 and −π < v < π corresponds to −π < v < π and w > 1, a

semi-infinite rectangle in the upper half of the vw-plane.

To find the corresponding region in (ii), it is convenient to introduce the

complex numbers z = v + iw, Z = V + iW . Then, the equations in (ii)

are equivalent to Z = z−i
z+i , z = Z+1

i(Z−1) . The line v = π in the vw-plane

corresponds to z + z̄ = 2π (the bar denoting complex conjugate), i.e.,
Z+1

i(Z−1) −
Z̄+1

i(Z̄−1)
= 2π, which simplifies to |Z − (1 − i

π )|
2 = 1

π2 ; so v = π

corresponds to the circle in the VW -plane with centre 1− i
π and radius 1

π .

Similarly, v = −π corresponds to the circle with centre 1 + i
π and radius

1
π . Finally, w = 1 corresponds to z − z̄ = 2i, i.e., Z+1

i(Z−1) +
Z̄+1

i(Z̄−1)
= 2i.

This simplifies to |Z − 1
2 |

2 = 1
4 ; so w = 1 corresponds to the circle with

centre 1/2 and radius 1/2 in the VW -plane. The required region in the

VW -plane is that bounded by these three circles:
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V 2 + W 2 = 1

V

O
W

For (iii) we follow the hint and make use of polar coordinates on the

disc, V = r cos θ, W = r sin θ, V̄ = r̄ cos θ̄, W̄ = r̄ sin θ̄. We find that

r̄ = 2r
r2+1 , θ̄ = θ. Suppose that the first fundamental form in terms of

these parameters is Edr̄2 + 2Fdr̄dθ̄ + Gdθ̄2. Since dr̄
dr = 2(1−r2)

(1+r2)2 , the

first fundamental form is 4(1−r2)2

(1+r2)4 Edr2 + 4(1−r2)
(1+r2)2 Fdrdθ + Gdθ2. Equat-

ing this to 4(dV 2+dW2)
(1−V 2−W2)2 = 4(dr2+r2dθ2)

(1−r2)2 , we get E = (1+r2)4

(1−r2)4 = 1
(1−r̄2)2 ,

F = 0, G = 4r2

(1−r2)2 = r̄2

1−r̄2 . Converting back to the parameters

(V̄ , W̄ ), we have r̄dr̄ = V̄ dV̄ + W̄dW̄ , r̄2dθ̄ = V̄ dW̄ − W̄dV̄ , so

the first fundamental form becomes (V̄ dV̄+W̄dW̄ )2+(1−r̄2)(V̄ dW̄−W̄dV̄ )2

r̄2(1−r̄2)2 =
(V̄ 2+(1−r̄2)W̄ 2)dV̄ 2+2r̄2V̄ W̄dV̄ dW̄+(W̄ 2+(1−r̄2)V̄ 2)dW̄ 2

r̄2(1−r̄2)2

= (1−W̄ 2)dV̄ 2+2V̄ W̄dV̄ dW̄+(1−V̄ 2)dW̄ 2

(1−V̄ 2−W̄ 2)2
.

8.4.1 Let σ̃(ũ, ṽ) be a patch of S containing p = σ̃(ũ0, ṽ0). The Gaussian cur-

vature K of S is < 0 at p; since K is a smooth function of (ũ, ṽ) (Exercise

8.1.3), K(ũ, ṽ) < 0 for (ũ, ṽ) in some open set Ũ containing (ũ0, ṽ0); then

every point of σ̃(Ũ) is hyperbolic. Let κ1, κ2 be the principal curvatures

of σ̃, let 0 < θ < π/2 be such that tan θ =
√

−κ1/κ2, and let e1 and e2
be the unit tangent vectors of σ̃ making angles θ and −θ, respectively,

with the principal vector corresponding to κ1 (see Theorem8.2.4). Ap-

plying Proposition 8.4.3 gives the result. For the last part, put v̇ = 0

in the formula for κn in Proposition7.3.5: this shows that L = 0 if the

parameter curves v = constant are asymptotic. Similarly N = 0 if the

parameter curves u = constant are asymptotic.
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8.5.1 By Corollary 8.1.3 and the fact that σ is conformal, the mean curvature

of σ is H = L+N
2E , so H = 0 ⇐⇒ L+N = 0, i.e., ⇐⇒ (σuu+σvv) ·N = 0

(*). Obviously, then, H = 0 if ∆σ = σuu + σvv = 0. For the con-

verse, we have to show that ∆σ = 0 if (*) holds. It is enough to

prove that ∆σ · σu = ∆σ · σv = 0, since {σu,σv,N} is a basis of

R3. We compute ∆σ · σu = σuu · σu + σvv · σu = 1
2 (σu · σu)u+

(σv · σu)v − (σv · σuv) = 1
2 (σu · σu − σv · σv)u + (σv · σu)v. Since

σ is conformal, σu · σu = σv · σv and σu · σv = 0. Hence, ∆σ · σu = 0.

Similarly, ∆σ · σv = 0. The first fundamental form of the given surface

patch is (1 + u2 + v2)2(du2 + dv2), so it is conformal, and σuu + σvv =

(−2u, 2v, 2) + (2u,−2v,−2) = 0.

8.5.2 Using the formula in Exercise 8.1.1 with f(x, y) = ln cos y− ln cosx gives

H = sec2 x(1+tan2 y)−sec2 y(1+tan2 x)
2(1+tan2 x+tan2 y)3/2

= 0.

8.5.3 Σu = σu +wNu, Σv = σv +wNv, Σw = N. Σu ·Σw = 0 since σu ·N =

Nu · N = 0, and similarly Σv · Σw = 0. Finally, Σu · Σv = σu · σv+

w(σu ·Nv+σv ·Nu)+w2Nu ·Nv = F−2wM+w2Nu ·Nv = w2Nu ·Nv; by

the proof of Proposition 8.1.2, Nu = −L
Eσu, Nv = −N

Gσv, so Nu ·Nv =
LN
EGF = 0. Every surface u = u0 (a constant) is ruled as it is the union of

the straight lines given by v = constant; by Exercise 8.2.4, this surface is

flat provided the curve γ(v) = σ(u0, v) is a line of curvature of S, i.e., if
σv is a principal vector; but this is true since the matrices FI and FII

are diagonal. Similarly for the surfaces v = constant.

Chapter 9

9.1.1 By Exercise 4.1.3, there are two straight lines on the hyperboloid passing

through (1, 0, 0); by Proposition 9.1.4, they are geodesics. The circle given

by z = 0, x2 + y2 = 1 and the hyperbola given by y = 0, x2 − z2 = 1 are

both normal sections, hence geodesics by Proposition 9.1.6.

9.1.2 Let z(γ) = γ̈ ·(N× γ̇). Note that if Γ(t) = γ({(t)) is a reparametrization

of γ, then z(Γ) =
(

dϕ
dt

)3

z(γ). In particular, z(γ) = 0 ⇐⇒ z(Γ) = 0.

For (i), let γ be a pre-geodesic and let Γ be a geodesic reparametriza-

tion of γ. By Proposition 9.1.2 Γ has constant speed, say v, and then

Γ̃(t) = Γ(t/v) is a unit-speed geodesic. By Proposition 9.1.3, z(Γ̃) = 0,

hence z(Γ) = 0, hence z(γ) = 0. Conversely, if z(γ) = 0 and if Γ is a

unit-speed reparametrization of γ, then z(Γ) = 0 so Γ is a geodesic

by Proposition 9.1.3. Part (ii) is obvious. For (iii), let γ be a con-

stant speed pre-geodesic, say with speed v. Then Γ(t) = γ(t/v) is a

unit-speed pre-geodesic, hence a geodesic by (i) and Proposition 9.1.3.
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Since γ̈ = v2Γ̈, γ̈ is perpendicular to the surface, so γ is a geodesic.

Finally, (iv) follows from (iii) and Proposition 9.1.2.

9.1.3 Let Πs be the plane through γ(s) perpendicular to t(s); the param-

eter curve s = constant is the intersection of the surface with Πs.

From the solution to Exercise 4.2.7, the standard unit normal of σ is

N = −(cos θ n + sin θ b). Since this is perpendicular to t, the circles in

question are normal sections.

9.1.4 Take the ellipsoid to be x2

p2 +
y2

q2 +
z2

r2 = 1; the vector ( x
p2 ,

y
q2 ,

z
r2 ) is normal

to the ellipsoid by Exercise 5.1.2. If γ(t) = (f(t), g(t), h(t)) is a curve on

the ellipsoid, R =
(

ḟ2

p2 + ġ2

q2 + ḣ2

r2

)−1/2

, S =
(

f2

p4 + g2

q4 + h2

r4

)−1/2

. Now, γ

is a geodesic⇐⇒ γ̈ is parallel to the normal⇐⇒ (f̈ , g̈, ḧ) = λ
(

f
p2 ,

g
q2 ,

h
r2

)

for some scalar λ(t). From f2

p2 +
g2

q2 +
h2

r2 = 1 we get fḟ
p2 +

gġ
q2 +

hḣ
r2 = 0, hence

ḟ2

p2 +
ġ2

q2 +
ḣ2

r2 +
ff̈
p2 +

gg̈
q2 +

hḧ
r2 = 0, i.e., ḟ2

p2 +
ġ2

q2 +
ḣ2

r2 +λ
(

f2

p4 + g2

q4 + h2

r4

)

= 0,

which gives λ = −S2/R2. The curvature ‖ γ̈ ‖= (f̈2 + g̈2 + ḧ2)1/2 = |λ|
(

f2

p4 + g2

q4 + h2

r4

)1/2

= |λ|
S = S

R2 . Finally,
1
2

d
dt

(

1
R2S2

)

=
(

fḟ
p4 + gġ

q4 + hḣ
r4

)

(

ḟ2

p2 + ġ2

q2 + ḣ2

r2

)

+
(

f2

p4 + g2

q4 + h2

r4

)(

ḟ f̈
p2 + ġg̈

q2 + ḣḧ
r2

)

= 1
R2

(

fḟ
p4 + gġ

q4 + hḣ
r4

)

+ λ
S2

(

fḟ
p4 + gġ

q4 + hḣ
r4

)

= 0, since λ = −S2/R2. Hence, RS is constant.

9.1.5 Suppose that a geodesic γ lies in the plane v · a = b, where a and b are

constants. Then γ̇ ·a = γ̈ ·a = 0. Since γ̈ is parallel to N (the unit normal

of the surface), N · a = 0, so Ṅ · a = 0. Since N, γ̇ and Ṅ are all parallel

to the plane and the last two vectors are perpendicular to the first, they

are parallel. Hence γ is a line of curvature by Exercise 8.2.2. Conversely,

if γ is both a geodesic and a line of curvature, we may assume γ has unit-

speed (for the unit-speed reparametrization of γ would still be a geodesic

and a line of curvature). Let a = N× γ̇. Then ȧ = Ṅ × γ̇ +N× γ̈ = 0

since the first term vanishes because γ is a line of curvature and the

second because γ is a geodesic. So a is constant. And γ̇ · a = 0 so γ · a is

a constant, say b. Hence γ lies in the plane v · a = b.

9.1.6 For (i) note that γ̈ is a non-zero vector parallel to both N1 and N2,

so N1 and N2 must be parallel. For an example, take S1 and S2 to be

the sphere and cylinder in Theorem 6.4.6. Now suppose that S1 and S2

intersect perpendicularly. Then, N1,N2 and γ̇ are perpendicular unit

vectors. From γ̇ ·N2 = 0 we get γ̈ ·N2 + γ̇ · Ṅ2 = 0. If γ is a geodesic on

S1, γ̈ ·N2 = 0 since γ̈ is parallel to N1, so Ṅ2 is perpendicular to γ̇. Since

Ṅ2 is also perpendicular to N2, it must be parallel to N1. Conversely, if

Ṅ2 is parallel to N1, then γ̇ · Ṅ2 = 0 so γ̈ is perpendicular to N2. Since

γ̈ is also perpendicular to γ̇, it must be parallel to N1. Finally, if γ is a
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geodesic on both S1 and S2, then Ṅ1 is parallel to N2 and Ṅ2 is parallel

to N1. It follows that (N1 ×N2)˙= Ṅ1 ×N2 +N1 × Ṅ2 = 0 so N1 ×N2

is a constant vector. Since γ̇ is a unit vector parallel to N1 × N2, γ̇ is

constant, so C is part of a straight line.

9.2.1 If p and q lie on the same parallel of the cylinder, there are exactly

two geodesics joining them, namely the two circular arcs of the parallel

of which p and q are the endpoints. If p and q are not on the same

parallel, there are infinitely many circular helices joining p and q (see

Example 9.2.8).

9.2.2 Take the cone to be σ(u, v) = (u cos v, u sin v, u). By Exercise

6.2.1, σ is locally isometric to an open subset of the xy-plane by

σ(u, v) → (u
√
2 cos v√

2
, u

√
2 sin v√

2
, 0). By Corollary9.2.7, the geodesics

on the cone correspond to the straight lines in the xy-plane. Any

such line, other than the axes x = 0 and y = 0, has equation

ax + by = 1, where a, b are constants; this line corresponds to the curve

v →
(

cos v√
2(a cos v√

2
+b sin v√

2
)
, sin v√

2(a cos v√
2
+b sin v√

2
)
, 1√

2(a cos v√
2
+b sin v√

2
)

)

; the

x- and y-axes correspond to straight lines on the cone.

9.2.3 Parametrize the cylinder by σ(u, v) = (cos u, sinu, v). Then, E = G = 1,

F = 0, so the geodesic equations are ü = v̈ = 0. Hence, u = a + bt, v =

c+ dt, where a, b, c, and d are constants. If b = 0 this is a straight line on

the cylinder; otherwise, it is a circular helix.

9.2.4 For the first part,

(Eu̇2 + 2F u̇v̇ +Gv̇2 )̇ = (Euu̇+ Evv̇) u̇
2 + 2(Fuu̇+ Fvv̇)u̇v̇

+(Guu̇+Gv v̇)v̇
2 + 2Eu̇ü+ 2F (u̇v̈ + üv̇) + 2Gv̇v̈

= u̇(Euu̇
2 + 2Fuu̇v̇ +Guv̇

2) + v̇(Evu̇
2 + 2Fvu̇v̇ +Gvv̇

2)

+2Eu̇ü+ 2F (u̇v̈ + üv̇) + 2Gv̇v̈

= 2(Euu̇+ F v̇)̇ u̇+ 2(F u̇+Gv̇)̇ v̇ + 2(Eu̇+ F v̇)ü+ 2(F u̇+Gv̇)v̈

(by the geodesic equations)

= 2[(Eu̇+ F v̇)u̇]˙+ 2[(F u̇+Gv̇)v̇]˙= 2(Eu̇2 + 2F u̇v̇ +Gv̇2) .̇

Hence, (Eu̇2 + 2F u̇v̇ + Gv̇2)̇ = 0 and so ‖ γ̇ ‖2 = Eu̇2 + 2F u̇v̇ +Gv̇2 is

constant.

Suppose now that (i) and (ii) hold. Differentiating Eu̇2 + 2F u̇v̇ +Gv̇2 =

constant gives (Euu̇ + Evv̇)u̇
2 + 2(Fuu̇ + Fv v̇)u̇v̇ + (Guu̇ + Gvv̇)v̇

2 =

−2(Eu̇+ F v̇)ü− 2(F u̇+Gv̇)v̈, i.e., (Euu̇
2 + 2Fuu̇v̇ +Guv̇

2)u̇+ (Evu̇
2 +

2Fvu̇v̇ + Gv v̇
2)v̇ = −2(Eu̇ + F v̇)ü − 2(F u̇ + Gv̇)v̈. Using (ii) we get

2u̇ d
dt (Eu̇ + F v̇) + 2(Eu̇ + F v̇)v̈ = −2(F u̇ + Gv̇)v̈ − (Evu̇

2 + 2Fvu̇v̇ +

Gv v̇
2)v̇. The left-hand side of this equation equals 2 d

dt (u̇(Eu̇ + F v̇)) =
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−2 d
dt(F u̇v̇+Gv̇2) = −2(F u̇+Gv̇)v̈−2v̇ d

dt (F u̇+Gv̇). Combining the last

two equations gives (iii) provided v̇ �= 0.

9.2.5 E = 1, F = 0, G = 1+u2, so γ is unit-speed ⇐⇒ u̇2+(1+u2)v̇2 = 1. The

second equation in (9.2) gives d
dt((1 + u2)v̇) = 0, i.e., v̇ = a

1+u2 , where

a is a constant. So u̇2 = 1 − a2

1+u2 and, along the geodesic, dv
du = v̇

u̇ =

± a√
(1−a2+u2)(1+u2)

. If a = 0, then v = constant and we have a ruling.

If a = 1, then dv/du = ±1/u
√
1 + u2, which can be integrated to give

v = v0 ∓ sinh−1 1
u , where v0 is a constant.

For the last part, note that
(

du
dv

)2
= (u2+1)(u2+1−a2)

a2 so (i) if a2 > 1 then

du/dv = 0 for u = ±
√
a2 − 1 and this is the minimum distance of the

geodesic from the z-axis; (ii) if a2 < 1 then |du/dv| > a−2 − 1 so u will

decrease to zero and the geodesic will cross the z-axis; (iii) if a2 = 1

then du/dv = ±(u2 + 1) so u = ± tan(v + c) where c is a constant. The

information given implies that, when u = D, cosα = γ̇ · σu = u̇ (since

E = 1, F = 0) so a2 = (1 + D2) sin2 α. Then, a2 is > 1, < 1 or = 1

according as D is >, < or = cotα.

9.2.6 This is straightforward algebra.

9.3.1 They are normal sections.

9.3.2 (i) Let the spheroid be obtained by rotating the ellipse x2

p2 +
z2

q2 = 1 around

the z-axis, where p, q > 0. Then, p is the maximum distance of a point of

the spheroid from the z-axis, so the angular momentum Ω of a geodesic

must be ≤ p (we can assume that Ω ≥ 0). If Ω = 0, the geodesic is a

meridian. If 0 < Ω < a, the geodesic is confined to the annular region

on the spheroid contained between the circles z = ±q
√

1− Ω2

p2 , and the

discussion in Example 9.3.3 shows that the geodesic ‘bounces’ between

these two circles (see diagram below).

If Ω = p, Eq. 9.10 shows that the geodesic must be the parallel z = 0.
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(ii) Let the torus be as in Exercise 4.2.5. If Ω = 0, the geodesic is a

meridian (a circle). If 0 < Ω < a − b, the geodesic spirals around the

torus. If Ω = a − b, the geodesic is either the parallel of radius a − b

or spirals around the torus approaching this parallel asymptotically (but

never crossing it):

0 < Ω < a − b Ω = a − b

If a − b < Ω < a + b, the geodesic is confined to the annular region

consisting of the part of the torus a distance ≥ Ω from the axis, and

bounces between the two parallels which bound this region:

If Ω = a+ b, the geodesic must be the parallel of radius a+ b.

9.3.3 The two solutions of Eq. 9.14 are v = v0±
√

1
Ω2 − w2, so the condition for

a self-intersection is that, for some w > 1, 2
√

1
Ω2 − w2 = 2kπ for some

integer k > 0. This holds ⇐⇒ 2
√

1
Ω2 − 1 > 2π, i.e., Ω < (1 + π2)−1/2.

In this case, there are k self-intersections, where k is the largest integer

such that 2kπ < 2
√

1
Ω2 − 1.

9.3.4 From the solution to Exercise 8.3.1, Z = V + iW = z−i
z+i , where

z = v + iw. This is a Möbius transformation, so it takes lines and circles
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to lines and circles and preserves angles (Appendix 2). Since the geodesics

on the pseudosphere correspond to straight lines and circles in the vw-

plane perpendicular to the v-axis, they correspond in the VW -plane to

straight lines and circles perpendicular to the image of the V -axis under

the transformation z |→ z−i
z+i , i.e., the unit circle V 2 +W 2 = 1.

A straight line aV̄ +bW̄ = c in the V̄ W̄ -plane (where a, b, c are constants)

corresponds to the curve 2aV +2bW = c(V 2+W 2+1) in the VW -plane.

If c = 0, this is a straight line through the origin, which corresponds to a

geodesic on the pseudosphere by the first part. If c �= 0 it is the equation

of a circle with centre (a/c, b/c) and squared radius (a2+b2−c2)/c2. This

circle intersects the boundary circle V 2 +W 2 = 1 orthogonally because

the square of the distance between the centres of the two circles is equal

to the sum of the squares of their radii. Hence this circle also corresponds

to a geodesic on the pseudosphere. This proves that every straight line in

the V̄ W̄ -plane corresponds to a geodesic on the pseudosphere. That every

geodesic on the pseudosphere arises from a straight line in the V̄ W̄ -plane

in this way can be proved by similar arguments, or by noting that there

is a straight line in the V̄ W̄ -plane passing through any point of the disc

V̄ 2 + W̄ 2 < 1 in any direction and using Proposition 9.2.4.

9.4.1 From Exercise 6.2.1, the cone is isometric to the ‘sector’ S of the plane

with vertex at the origin and angle π
√
2:

O

Geodesics on the cone correspond to possibly broken line segments in S: if
a line segment meets the boundary of S at a point A, say, it may continue

from the point B on the other boundary line at the same distance as A

from the origin and with the indicated angles being equal.
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O

A

B

(i) TRUE: if two points P and Q can be joined by a line segment in S
there is no problem; otherwise, P and Q can be joined by a broken

line segment satisfying the conditions above:

O S

Q

R

p2

P

p1

q1

q2

To see that this is always possible, let p1, p2, q1 and q2 be the

indicated distances, and let R and S be the points on the boundary

of the sector at a distance (p2q1 + p1q2)/(p2 + q2) from the origin.

Then, the broken line segment joining P and R followed by that

joining S and Q is the desired geodesic.
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(ii) FALSE:

P

Q

(iii) FALSE: many meet in two points, such as the two geodesics joining

P and Q in the diagram in (ii).

(iv) TRUE: the meridians do not intersect (remember that the vertex

of the cone has been removed), and parallel straight lines that are

entirely contained in S do not intersect.

(v) TRUE: since (broken) line segments in S can clearly be continued

indefinitely in both directions.

(vi) FALSE: if A and B are points on the boundary of the sector at the

same distance from O (see the diagram at the top of the previous

page) and if C is a point in the sector such that the straight line seg-

ments AC and BC are in the sector, then AC and BC are geodesics

joining the same two pints of the cone but they have different length

unless C lies on the bisector of the angle of the sector.

(vii ) TRUE: a situation of the form

O
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in which the indicated angles are equal is clearly impossible. But the

answer to this part of the question depends on the angle of the cone: if

the angle is α, instead of π/4, lines can self-intersect if α < π/6, for then

the corresponding sector in the plane has angle < π.

O

9.4.2 We consider the intersection of S2 with the plane passing through p and

q and making an angle θ with the xy-plane, where −π/2 < θ < π/2. This

intersection is a circle Cθ but it is not a great circle unless θ = 0. Hence,

if θ �= 0, the short segment of Cθ joining p and q is not a geodesic and so

has length > π/2 (the length of the shortest geodesic joining p and q).

Since the length of Cθ is ≤ 2π, the length of the long segment of Cθ joining
p and q has length < 3π/2 if θ �= 0, i.e., strictly less than the length of

the long segment of the geodesic C0 joining p and q. So the long geodesic

segment is not a local minimum of the length of curves joining p and q.

9.4.3 (i) This is obvious if n ≥ 0 since e−1/t2 → 0 as t → 0. We prove

that t−ne−1/t2 → 0 as t → 0 by induction on n ≥ 0. We know

the result if n = 0, and if n > 0 we can apply L’Hopital’s rule:

limt}0
t−n

e1/t2
= limt}0

nt−n−1

2
t3

e1/t2
= limt}0

n
2
t−(n−2)

e1/t2
, which vanishes by the

induction hypothesis.

(ii) We prove by induction on n that θ is n-times differentiable with
dnθ

dtn
=

~
Pn(t)
t3n e−1/t2 if t �= 0,

0 if t = 0,

where Pn is a polynomial in t. For n = 0, the assertion holds

with P0 = 1. Assuming the result for some n ≥ 0, dn+1θ
dtn+1 =

(

−3nPn

t3n+1 +
P ′

n

t3n + 2Pn

t3n+3

)

e−1/t2 if t �= 0, so we take Pn+1 = (2− 3nt2)Pn +

t3P ′
n. If t = 0, dn+1θ

dtn+1 = limt→ 0
Pn(t)
t3n+1 e

−1/t2 = Pn(0) limt}0
e−1/t2

t3n+1 = 0 by

part (i). Parts (iii) and (iv) are obvious.
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9.5.1 Since γθ is unit-speed, σr ·σr = 1, so
∫ R

0
σr · σr dr = R. Differentiating

with respect to θ gives
∫ R

0 σr · σrθ dr = 0, and then integrating by parts

gives

σθ·σr|
r=R
r=0 −

∫ R

0

σθ·σrr dr = 0.

Now σ(0, θ) = p for all θ, so σθ = 0 when r = 0. So we must show

that the integral in the last equation vanishes. But, σrr = γ̈θ, the dot

denoting the derivative with respect to the parameter r of the geodesic

γθ, so σrr is parallel to the unit normal N of σ; since σθ · N = 0, it

follows that σθ ·σrr = 0. The first fundamental form is as indicated since

σr · σr = 1 and σr · σθ = 0.

9.5.2 (i) The length of the part of γ between p and q is
∫ 1

0

√

ḟ2 +Gġ2dt ≥
∫ 1

0

√

ḟ2dt = f(1) − f(0) = R. (ii) Use the hint, noting that the length

of the part of γ between p and q′ is ≥ R. (iii) If the part of γ between

p and q has length R, then it must stay inside the geodesic circle with

centre p and radius R by (ii), and then we must have
∫ 1

0

√

ḟ2 +Gġ2dt =
∫ 1

0

√

ḟ2dt. Then Gġ = 0 for all t ∈ (0, 1), so ġ = 0 (as G > 0) and so g is

a constant which must be α as γ passes through q. This means that γ is

a parametrization of the radial line θ = α.

Chapter 10

10.1.1 The matrix of the Weingarten map with respect to the basis {σu,σv} is

F−1
I FII = =

(

cos2 v 0

0 1

)−1 ( − cos2 v 0

0 −1

)

= −I, so Nu = σu,

Nv = σv. Thus, N = σ − a, where a is a constant vector. Hence,

‖ σ − a ‖= 1, showing that the surface is an open subset of the sphere

S of radius 1 and centre a. The standard latitude-longitude parametriza-

tion σ(u, v) of S2 has first and second fundamental forms both given

by du2 + cos2 udv2, so the parametrization σ(v, u) + a of S has the

given first and second fundamental forms (the second fundamental form

changes sign because σv × σu = −σu × σv).

10.1.2 Γ1
22 = sinu cosu and the other Christoffel symbols are zero; the second

Codazzi–Mainardi equation is not satisfied.

10.1.3 The Christoffel symbols are Γ1
11 = 0, Γ2

11 = 1/w, Γ1
12 = −1/w, Γ2

12 = 0,

Γ1
22 = 0, Γ2

22 = −1/w. Using the first equation in Proposition 10.1.2 we

get K = −1. The Codazzi-Mainardi equations are Lw = −(L + N)/w,
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Nv = 0. Hence, N depends only on w, and since −1 = K = LN/EG,

we have LN = −1/w4 so L also depends only on w; the first Codazzi-

Mainardi equation gives dL/dw = −L/w + 1/Lw5, which is the stated

differential equation. Putting P = Lw2 we get dP/dw = (1 + P 2)/wP

which integrates to give 1 + P 2 = Cw2, where C > 0 is a constant,

i.e., L = ±
√
Cw2 − 1/w2. Hence, the second fundamental form is only

defined for w ≥ C−1/2 or w ≤ −C−1/2.

The first fundamental form in this exercise is the same as that of a

suitable parametrization of the pseudosphere (see Exercise 8.3.1(i)). We

saw that the pseudosphere corresponds to (part of) the region w > 1.

10.1.4 The Christoffel symbols are Γ1
11 = Eu/2E, Γ2

11 = −Ev/2G, Γ1
12 =

Ev/2E, Γ2
12 = Gu/2G, Γ1

22 = −Gu/2E, Γ2
22 = Gv/2G. The first

Codazzi–Mainardi equation is

Lv =
LEv

2E
−N

(−Ev

2G

)

=
1

2
Ev

(

L

E
+

N

G

)

,

and similarly for the other equation. Finally,

(�1)v =
Ev

2E

(

L

E
+

N

G

)

− LEv

E2
=

Ev

2E

(

N

G
− L

E

)

=
Ev

2E
(�2 − �1),

and similarly for (�2)u.

10.2.1 By Corollary10.2.3(i), K = − 1
2eλ

(

∂
∂u

(

(eλ)u
eλ

)

+ ∂
∂v

(

(eλ)v
eλ

))

=

− 1
2eλ

(�uu + �vv).

10.2.2 By Exercise 6.1.4,

(

Ẽ F̃

F̃ G̃

)

= J t

(

E F

F G

)

J , where J =

(

∂r
∂u

∂r
∂v

∂θ
∂u

∂θ
∂v

)

=

(

u
r

v
r

−v
r2

u
r2

)

. By Exercise 9.5.1, E = 1, F = 0, and

we get the stated formulas for Ẽ, F̃ , G̃. From Ẽ − 1 = v2

r2

(

G
r2 − 1

)

,

G̃ − 1 = u2

r2

(

G
r2 − 1

)

, we get u2(Ẽ − 1) = v2(G̃ − 1). Since Ẽ

and G̃ are smooth functions of (u, v), they have Taylor expansions

Ẽ =
∑

i+j≤2 eiju
ivj + o(r2), G̃ =

∑

i+j≤2 giju
ivj + o(r2), where o(rk)

denotes terms such that o(rk)/rk → 0 as r → 0. Equating coefficients

on both sides of u2(Ẽ−1) = v2(G̃−1) shows that all the e’s and g’s are

zero except e02 = g20 = k, say. Then, Ẽ = 1+kv2+o(r2), which implies

that G = r2 + kr4 + o(r4). By Corollary10.2.3(ii), K = − 1√
G

∂2
√
G

∂r2 .

From the first part,
√
G = r + 1

2kr
3 + o(r3), hence K = −3k + o(1).

Taking r = 0 gives K(P ) = −3k.

10.2.3 (i) CR =
∫ 2π

0
‖ σθ ‖ dθ =

∫ 2π

0

√
Gdθ =

∫ 2π

0

(

R− 1
6K(P )R3 + o(R3)

)

dθ = 2π
(

R− 1
6K(P )R3 + o(R3)

)

. (ii) Since dAσ =
√
Gdrdθ, the area
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AR =
∫ R

0

∫ 2π

0

√
Gdrdθ is equal to 2π

∫ R

0

(

r − 1
6K(P )r3 + o(r3)

)

dr =

πR2
(

1− K(P )
12 R2 + o(R2)

)

. If S = S2, Exercise 6.5.3 gives CR =

2π sinR = 2π(R = 1
6R

3+o(R3)), AR = 2π(1−cosR) = 2π(12R
2− 1

24R
4+

o(R4)). Since K = 1 these formulas agree with those in (i) and (ii).

10.2.4 (i) Let s be the arc-length of γ, so that ds/dθ = λ, and denote d/ds

by a dot. The first of the geodesic equations (9.2) applied to γ gives

r̈ = 1
2Gr θ̇

2. Since r = f(θ), this gives 1
λ

(

1
λf

′
)′

= 1
2λ2Gr. This simplifies

to give the stated equation. (ii) Since σr and γ̇ are unit vectors, cosψ =

σr · γ = 1
λσr · (f ′σr +σθ) = f ′/λ. Also, σr × γ̇ = 1

λ (σr ×σθ) =
√
G
λ N,

so sinψ =
√
G/λ. Hence,

(

f ′

λ

)′
= −ψ′ sinψ = −

√
G
λ ψ′, and so ψ′ =

− 1√
G

(

f ′′ − f ′λ′

λ

)

= − 1
2
√
G

∂G
∂r = −∂

√
G

∂r .

(iii) Using the formula for K in Corollary 10.2.3(ii) and the expression

for the first fundamental form of σ in Exercise 9.5.1, we get
∫

T
KdAσ =

∫ α

0

∫ f(θ)

0

− 1√
G

∂2
√
G

∂r2

√
Gdrdθ

= −
∫ α

0

∂
√
G

∂r

∣

∣

∣

∣

∣

r=f(θ)

r=0

dθ =

∫ α

0

(

ψ′ +
∂
√
G

∂r

∣

∣

∣

∣

∣

r=0

)

dθ.

By Exercise 10.2.2,
√
G = r + o(r) so ∂

√
G/∂r = 1 at r = 0. Hence,

∫

ABC
KdAσ = ψ(α)− ψ(0) + α = γ − (π − β) + α = α+ β + γ − π.

A

B

C

Ã(0)

Ã(Ð A)

10.2.5 With the notation of Example 4.5.3 we have, on the median circle

t = 0, σt =
(

− sin θ
2 cos θ,− sin θ

2 sin θ, cos
θ
2

)

, σθ = (− sin θ, cos θ, 0),

hence E = 1, F = 0, G = 1 and N =
(

− cos θ
2 cos θ, sin

θ
2 sin θ,− sin θ

2

)

;

σtt = 0, σtθ =
(

− 1
2 cos

θ
2 cos θ + sin θ

2 sin θ,− 1
2 cos

θ
2 sin θ − sin θ

2 cos θ,

− 1
2 sin

θ
2

)

, giving L = 0,M = 1
2 . Hence, K = (LN −M2)/(EG−F 2) =

−1/4. Since K �= 0, the Theorema Egregium implies that the Möbius

band is not locally isometric to a plane.
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10.2.6 The catenoid has first fundamental form cosh2 u(du2 + dv2) and its

Gaussian curvature is K = −sech4u (Exercise 8.1.2). If f is an isometry

of the catenoid, let f(σ(u, v)) = σ(ũ, ṽ). By the Theorema Egregium,

sech4u = sech4ũ, so ũ = ±u; reflecting in the plane z = 0 changes u to

−u, so assume that the sign is +. Let ṽ = f(u, v); the first fundamental

form of σ(u, f(u, v)) is (cosh2 u+ f2
u)du

2 + 2fufvdudv + f2
v cosh

2 udv2;

hence, cosh2 u = cosh2 u + f2
u, fufv = 0 and f2

v cosh2 u = cosh2 u. So

fu = 0, fv = ±1 and f = ±v + α, where α is a constant. If the sign

is + we have a rotation by α about the z-axis; if the sign is − we have

a reflection in the plane containing the z-axis and making an angle α/2

with the xz-plane.

10.3.1 Arguing as in the proof of Theorem 10.3.4, we suppose that J attains

its maximum value > 0 at some point p ∈ S contained in a patch

σ of S. We can assume that the principal curvatures κ1 and κ2 of σ

satisfy κ1 > κ2 > 0 everywhere. Since H = 1
2 (κ1 + κ2), κ1 > H and

J = 4(κ1 − H)2. Thus, J increases with κ1 when κ1 > H , so κ1 must

have a maximum at p, and then κ2 = 2H−κ1 has a minimum there. By

Lemma 10.3.5, K ≤ 0 at p, contradicting the assumption that K > 0

everywhere.

10.3.2 We start with the parametrization σ(U, V ) = (f(U) cosV, f(U) sinV,

g(U)), where f(U) = eU , g(U) =
∫ √

1− e2U dU . The first and

second fundamental forms are dU2 + e2U dV 2 and −eU√
1−e2U

dU2 +

eU
√
1− e2U dV 2, respectively. In the notation of the proof of Propo-

sition 10.3.2, κ1 = −1/eU
√
1− e2U , κ2 = e−U

√
1− e2U . So we are

in case (ii) of the proof and tanω =
√
e−2U − 1. We find that

e(U) = E/ sin2 ω = 1
1−e2U , g(V ) = G sec2 ω = 1. So Ṽ = V

and Ũ =
∫

dU√
1−e2U

= − cosh−1(e−U ) − c for some constant c. So

U = − ln(cosh(Ũ + c)). Hence, θ = 2ω = 2 tan−1
√
e−2U − 1 =

2 tan−1
√

cosh2(Ũ + c)− 1 = 2 tan−1 sinh(Ũ + c). Finally, u =
1
2 (Ũ + Ṽ ), v = 1

2 (Ṽ − Ũ), so Ũ = u− v.

10.4.1 Let f : S → S̃ be a local diffeomorphism that takes unit-speed geodesics

to unit-speed geodesics. Let p ∈ S and let 0 �= v ∈ TpS. There is a

unique geodesic γ(t) on S such that γ(0) = p and γ̇(0) = v/ ‖ v ‖.
Then γ is unit-speed so γ̃ = f ◦γ is a unit-speed geodesic. In particular,
˙̃γ = Dpf(v/ ‖ v ‖) is a unit vector, i.e., ‖ Dpf(v) ‖= ‖ v ‖. This means

that Dpf : TpS → Tf(p)S̃ is an isometry, so f is a local isometry.

10.4.2 Local isometries take geodesics to geodesics by Corollary9.2.7. If we

apply a dilation v → av, where a �= 0 is a constant, to a surface,
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the first fundamental form gets multiplied by a2 and so the Christoffel

symbols are unchanged (see Proposition 7.4.4). By Proposition 9.2.3, the

geodesic equations are unchanged. It follows that dilations take geodesics

to geodesics. Hence, any composite of local isometries and dilations also

takes geodesics to geodesics. The converse is false: the map from the

xy-plane to itself given by (x, y) �→ (x, 2y) takes geodesics to geodesics

(as it takes straight lines to straight lines) but is not the composite of a

dilation and a local isometry.

10.4.3 (i) This is true because F is conformal. (ii) The parameter curve

u �→ σ(u, v0) is a geodesic on σ for any fixed v0 by construction

of the geodesic patch σ. Since F is a geodesic local diffeomorphism,

u �→ F (σ(u, v0)) is a pre-geodesic on σ̃. Hence, for some smooth func-

tion u(t), t �→ F (σ(u(t), v0)) is a geodesic on σ̃. The second geodesic

equation in Theorem 9.2.1 gives λvu̇
2 = 0, so λv = 0 and λ is inde-

pendent of v. (iii) Let γ(t) = σ(u(t), v(t)); we can assume that γ is

unit-speed. Since the first fundamental form of σ is du2 + Gdv2, the

parameter curves v = constant and u = constant intersect orthogonally

and unit vectors parallel to them are σu and σv/
√
G, respectively. If

the oriented angle between γ̇ and the curve v = constant is θ, we have

γ̇ = cos θσu+sin θσv/
√
G = u̇σu+ v̇σv. Hence, u̇ = cos θ and v̇ = sin θ√

G
.

The first geodesic equation in Theorem 9.2.1 gives ü = 1
2Guv̇

2, i.e.,

θ̇ sin θ = 1
2Guv̇

2. Substituting for v̇ gives dθ
dv = θ̇

v̇ = Guv̇
2 sin θ = Gu/2

√
G.

(iv) Apply (iii) to F ◦ γ and use the fact that F is conformal. (v) Parts

(iii) and (iv) imply (λG)u = λGu, hence λuG = 0, hence λu = 0, i.e., λ is

independent of u. By (ii), λ is constant. (vi) If Dλ−1/2 is the dilation by

a factor λ−1/2, the composite Dλ−1/2 ◦F preserves the first fundamental

form and so is a local isometry, say G. Then, F = Dλ1/2 ◦ G.

Chapter 11

11.1.1 Let l meet the real axis at b and suppose that Re(a) > b (the case

Re(a) < b is similar). The semicircle with centre d on the real axis

and radius |a− d| passes through a and does not meet l provided that

|a− d| ≤ |d− b|, i.e., provided d ≥ (|a|2 − b2)/(Re(a)− b).

11.1.2 Suppose that a and b lie on a half-line geodesic, say a = r+is, b = r+it,

where r, s, t ∈ R and t > s. Then, dH(a, b) =
∫ t

s
dw
w = ln(t/s) = d, say,

so t/s = ed. On the other hand, the formula in Proposition 11.1.4 gives

2tanh−1
(

t−s
t+s

)

= 2tanh−1
(

ed−1
ed+1

)

= 2tanh−1(tanhd
2 ) = d.
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11.1.3 The required hyperbolic line cannot be a half-line, so must be a semi-

circle with centre the origin, and it must have radius |a|.

11.1.4 By Proposition 11.1.4, z ∈ Ca,R ⇐⇒ 2tanh−1
∣

∣

∣

z−a
z−ā

∣

∣

∣ = R. If λ =

tanh(R/2), this is equivalent to (1−λ2)|z|2 − (ā−λ2a)z− (a−λ2ā)z̄+

(1 − λ2)|a|2 = 0. According to Proposition A.2.3, this is the equation

of a circle provided that λ2 < 1, which is obvious, and |ā − λ2a|2 >

(1−λ2)2|a|2. This condition reduces to 2|a|2 > a2+ā2. Writing a = |a|eiθ

this becomes cos 2θ < 1, which is true because a ∈ H implies 0 < θ < π.

Cic,R will be a circle with centre on the imaginary axis, say at ib. Then

Ca,R intersects the imaginary axis at the points i(b ± r), so these two

points must be a hyperbolic distance 2R apart, i.e., 2R = 2tanh−1
∣

∣

2ir
2ib

∣

∣.

This gives r = b tanhR, which is equivalent to R = 1
2 ln

b+r
b−r . Next, the

points i(b± r) are the same hyperbolic distance from ic, so
∣

∣

∣

i(b+r)−ic
i(b+r)+ic

∣

∣

∣ =
∣

∣

∣

i(b−r)−ic
i(b−r)+ic

∣

∣

∣. This gives (b + r − c)(b − r + c) = (c + r − b)(c + r + b),

which simplifies to c2 = b2 − r2. Parametrizing Cic,R by v = r cos θ, w =

b + r sin θ, and denoting d/dθ by a dot, the circumference of Cic,R
is

∫ 2π

0

√
v̇2+ẇ2

w2 dθ =
∫ 2π

0
r

b+r sin θdθ = 2πr√
b2−r2

= 2π sinhR. The area

inside Cic,R is
∫

int(C ic,R)
dvdw
w =

∫

C ic,R

dv
w by Green’s theorem, which

=
∫ 2π

0
−r sin θ
b+r sin θdθ = 2πb√

b2−r2
− 2π =2π(coshR − 1). The circumference

is 2π sinhR =2π(R + 1
6R

3 + o(R3)) and the area is 2π(coshR − 1) =

2π(12R
2 + 1

24R
4 + o(R4))). Since K =−1 these formulas are consistent

with those in Exercise 10.2.7. (See Exercise 10.2.3 for the o( ) notation.)

11.2.1 By Proposition 11.2.3, there is an isometry that takes a to i and b to

ir, say, where r > 0. Since isometries leave distances unchanged, we

need only prove the result for a = i, b = ir. Assume that r > 1 (the

case r < 1 is similar). Then, dH(a, b) = ln r. On the other hand, if

γ(t) =v(t)+ iw(t) is any curve in H with γ(t0) =i,γ(t1) =ir, say, the

length of the part of γ between a and b is
∫ t1
t0

√
v̇2+ẇ2

w dt ≥
∫ t1
t0

ẇ
wdt =

∫ r

1
dw
w =ln r.

11.2.2 By applying an isometry we can assume that l is a half-line, and then

the result was proved in Exercise 11.1.1.

11.2.3 By applying an isometry, we can assume that l is the imaginary axis.

Then, m must be the semicircle with centre the origin and radius |a|.
Let a = ρeiθ, where ρ > 0,−π < θ < π, and let c = it, t > 0. Since

tanh−1x is a strictly increasing function of x, we have to show that
∣

∣

∣

a−it
a+it

∣

∣

∣ >
∣

∣

∣

a−iρ
a+iρ

∣

∣

∣ if t �=ρ. The second expression equals 1−sin θ
1+sin θ , and the

difference is 2(ρ−t)2

|a+it|2
sin θ

1+sin θ , which is > 0 if t �=ρ.
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11.2.4 (i) If a ∈ H, let l′ and m′ be the unique hyperbolic lines passing through

a and perpendicular to l and m, respectively (Exercise 11.2.3). Let b and

c be the intersections of l′ and m′ with l and m, respectively. We are

given that F (b) = b and F (c) = c, so F (l′) = l′ and F (m′) = m′ as

l′ and m′ are the unique hyperbolic lines passing through b and c and

perpendicular to l and m. Since a is the unique point of intersection of

l′ and m′, we must have F (a) = a. (ii) Either F or I0,1 ◦ F fixes l, m

and the interior of the semicircle m. Next, either F , I0,1 ◦ F , R0 ◦ F or

R0 � �0,1 � F fixes l, m, the interior of the semicircle m and the region

H>0 = {z ∈ H |Re(z) > 0} to the right of l. Let G be this isometry.

Then, G fixes each point of m because there is a unique point of m at

any given distance d > 0 from i in the regionH>0. Similarly, G fixes each

point of l. Hence, G is the identity by (i). (iii) Let F be any isometry of

H. By the proof of Proposition 11.2.3, there is an isometry G that is a

composite of elementary isometries and which takes F (i) to i and F (l)

to l. Then, G ◦ F is an isometry that fixes l and i. As m is the unique

hyperbolic line intersecting l perpendicularly at i, G ◦ F fixes m. By

(iii), G ◦F is one of four composites of elementary isometries. It follows

that F is a composite of elementary isometries. (iv) By (iii) it suffices

to prove that every elementary isometry is a composite of reflections

and inversions in lines and circles perpendicular to the real axis. For

reflections and inversions there is nothing to prove, so we need only

consider translations and dilations. But, if a ∈ R, T a = R 0 ◦ R1, where

R1 is the reflection in the line Re(z) = a/2; and if a > 0, Da = I0 ◦ I ,
where I is inversion in the circle with centre the origin and radius

√
a.

11.2.5 (i) This is obvious from the proof of Proposition A.1.2(ii). (ii) If

a, b, c, d ∈ R, a calculation shows that Im(M(z)) = ad−bc
|cz+d|2Im(z). If

ad − bc > 0 this is > 0 whenever Im(z) > 0. Conversely, suppose that

M takes H to itself. Assume that c �= 0 and d �= 0 (the cases in which

c = 0 or d = 0 are similar but easier). Then, M must take the real axis

to itself (as it must take the lower half-plane −H to itself), i.e., az+b
cz+d ∈ R

if z ∈ R. Taking z = 0 gives b/d = λ ∈ R, say. Letting z → ∞ gives

a/c = μ ∈ R, say. Then, az+b
cz+d = μ+ λ−µ

c
d z+1 . This is real whenever z is real,

so c/d = ν ∈ R, say. Hence, a, b, c, d are, up to an overall multiple, equal

to the real numbers μν, λ, ν, 1, respectively. The condition ad − bc > 0

now follows from the previous calculation. (iii) Following the proof (and

the notation) of Proposition A.2.2, we have M = Tb/d ◦ Da/d if c = 0

(and then d �= 0), while if c �= 0, M = Ta/c ◦ D(ad−bc)/c2 ◦ (−K) ◦ Td/c.
Hence, it suffices to show that −K is a composite of elementary isome-

tries. But −K = R0 ◦ I0,1 in the notation of Exercise 11.2.4. (iv) J

is reflection in the imaginary axis and hence an isometry of H, so the
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result follows from (i). (v) This follows from the fact that, if M is a real

Möbius transformation, so is J ◦M ◦ J . For example, if M1,M2 are real

Möbius transformations, then (M1 ◦ J) ◦ (M2 ◦ J) = M1 ◦ (J ◦M2 ◦ J) is

a composite of real Möbius transformations, hence a real Möbius trans-

formation by (i). (vi) By (v) and Exercise 11.2.4(iii), it suffices to prove

that every elementary isometry of H is a Möbius isometry. If a ∈ R,

Ta is real Möbius and Ra = T2a ◦ J . If a > 0 then Da is real Möbius.

Finally, if a ∈ R, r > 0 then Ia,r = Ta ◦Dr2 ◦ I0,1 ◦ T−a (see the proof of

Proposition 11.2.1), so it suffices to prove that I0,1 is a Möbius isometry;

but I0,1 = (−K) ◦ J , where −K(z) = −1/z is real Möbius.

11.3.1 The distance we want is 2tanh−1
∣

∣

∣

P −1(b)−P −1(a)
P −1(b)−P −1(a)

∣

∣

∣. Now use P−1(z) =
z+1

i(z−1) . The algebra is straightforward.

11.3.2 By Proposition 11.2.3, there is an isometry F that takes l to the real

axis and the point of intersection of l and m to the origin. Then F

must take m to the imaginary axis as this is the unique hyperbolic line

through the origin perpendicular to the real axis. The number of such

isometries is the number of isometries that take the real axis to itself

and the imaginary axis to itself. If G is such an isometry, then either

G, R0 ◦G, R1 ◦G or R1 ◦ R0 ◦G fix the real and imaginary axes and

also each quadrant into which the disc DP is divided by the axes. If H

is this isometry, the argument used in the solution of Exercise 11.2.4(ii)

shows that H must be the identity map. Hence, G = R0, R1, R0 ◦ R1

or the identity map.

11.3.3 Let us call a Möbius transformation of the type in the statement of the

exercise a hyperbolic Möbius transformation. Since P is a Möbius trans-

formation, the Möbius transformations that take DP to itself are those

of the form PMP−1, where M is a Möbius transformation that takes

H to itself, i.e., a real Möbius transformation (Exercise 11.2.5). If

M(z) = az+b
cz+d , where a, b, c, d ∈ R and ad − bc > 0, we find that

PMP−1(z) = (a+d+i(b−c))z+a−d−i(b+c)
(a−d+i(b+c))z+a+d−i(b−c) . Since |a + d + i(b − c)|2 −

|a− d− i(b+ c)|2 = 4(ad− bc) > 0, PMP−1 is hyperbolic. Conversely,

we have to show that if M is a hyperbolic Möbius transformation, then

P−1MP is a real Möbius transformation. The calculation is similar to

that already given.

11.3.4 By Exercise 11.2.5(iii), the isometries of H are of the form M or M ◦ J
where M is real Möbius and J(z) = −z̄. Hence, the isometries of DP are

PMP−1 and P(M ◦J)P−1 = PMP−1 ◦PJP−1. But PMP−1 is hyper-

bolic and PJP−1(z) = PJ
(

z+1
i(z−1)

)

= P
(

z̄+1
i(z̄−1)

)

= P(P−1(z̄)) = z̄.
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11.3.5 We know that every isometry of H is the composite of reflections Ra

and inversions Ia,r with a ∈ R, r > 0 (Exercise 11.2.4(iv)). Now,

Ia,r = Ta ◦ Dr2 ◦ I0,1 ◦ T−a and any translation Ta (a ∈ R) is the

composite of reflections R0 ◦ Ra/2. It therefore suffices to show that, if

F is any isometry of H of the form Ra (a ∈ R), Da (a > 0) or I0,1, then
P ◦ F ◦ P−1 is a composite of isometries of DP of the types in Proposi-

tion 11.3.3. We find that (a) if a �= 0, P◦Ra◦P−1 = Ib,r, where b = 1+ia
ia ,

r = 1/|a|; (b) P ◦R0 ◦P−1 is reflection in the real axis; (c) P ◦I0,1 ◦P−1

is reflection in the imaginary axis; (d) if a > 0, P ◦ Da ◦ P−1 is the

composite of two inversions of the type in Proposition 11.3.3(i), namely

Ic,√c2−1 ◦ Ib,√b2−1, where b, c are real numbers such that b2 > 1, c2 > 1

and a = f(c)/f(b) where f(x) = x+1
x−1 . (We can take b to be any real num-

ber > 1 and distinct from 1/f(a), then choose c = f(af(b)); then, f(c) =

f(f(af(b))) = af(b) using the property f(f(x)) = x for all x �= 1.)

11.3.6 Suppose first that γ = π/2. The cosine rule gives coshC = coshA coshB

and coshA = coshB coshC − sinhB sinhC cosα. Eliminating coshC

gives cosα = coshA sinhB/ sinhC. Hence, sin2 α sinh2 C = sinh2 C −
cosh2 A sinh2 B = cosh2 A cosh2 B−1− cosh2 A sinh2 B = cosh2 A−1 =

sinh2 A, so sinα/ sinhA = 1/ sinhC. Interchanging the roles of A and

B gives sinβ/ sinhB = 1/ sinhC.

In the general case suppose that the hyperbolic line through the vertex

of the triangle with angle α intersects the opposite side at a point

which divides that side into segments of lengths A′ and A′′, so that

β is the angle between the sides of lengths C and A′. Suppose also

that this hyperbolic line segment has length D. Then the original tri-

angle is divided into two triangles, one with angles π/2, β, α′ and sides

of lengths C,D,A′ and the other with angles π/2, γ, α′′ and sides of

lengths B,D,A′′. Applying the first part to each of these triangles

gives sinβ/ sinhD = 1/ sinhC and sin γ/ sinhD = 1/ sinhB. Hence,

sinβ/ sinhB = sin γ/ sinhC. The other equation is proved by inter-

changing the roles of A and B (for example). The case in which the

hyperbolic line through a vertex meets the hyperbolic line through the

other two vertices in a point outside the triangle is similar.

11.3.7 (i) Using the sine rule, cos2 α sinh2 C = sinh2 C − sinh2 A = cosh2 C −
cosh2 A = cosh2 A(cosh2 B−1) (using the cosine rule) = cosh2 A sinh2 B.

(ii) Using the sine and cosine rules, sinβ = sinhB/ sinhC and

cosα = (coshB coshC − coshA)/ sinhB sinhC. Hence, cosα/ sinβ =

(coshB coshC−coshA)/ sinh2 B = (cosh2 B coshA−coshA)/ sinh2 B =

coshA. (iii) Using sinβ = sinhB/ sinhC and the cosine rule for cosβ,

we get cotβ = coshA coshC−coshB
sinhA sinhB = sinh2 A coshB

sinhA sinhB = sinhA
tanhB .
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11.3.8 If γ = π/2 the formula we want is that in Exercise 11.3.7(ii).

In the general case, we use the method (and notation) of the so-

lution of Exercise 11.3.6. In the case where the hyperbolic line

through a vertex perpendicular to the opposite side meets that side

at a point inside the triangle, applying Exercise 11.3.7(ii) to the

two right-angled triangles gives coshA′ = cosα′/ sinβ, coshA′′ =

cosα′′/ sin γ, so coshA = cosh(A′ + A′′) = coshA′ coshA′′ +

sinhA′ sinhA′′ = cos�′ cos�′′

sinβ sin γ + tanh2D
tanβ tan γ using Exercise 11.3.7(iii).

By 11.3.7(ii), coshD = cosβ
sin�′ = cosγ

sin�′′ so coshA sinβ sin γ =

cosα + sinα′ sinα′′ + tanh2D cosβ cos γ = cosα + sech2D cosβ cos γ +

tanh2D cosβ cos γ = cosα + cosβ cos γ. The case in which the perpen-

dicular meets the opposite side at a point outside the triangle is similar.

11.3.9 Let γ(t) = (x(t), y(t), z(t)) be a curve on S2. Then, Π(γ(t)) =

(u(t), v(t)), where u = x
1−z , v = y

1−z . Denoting d/dt by a dot,

u̇ = (1−z)ẋ+xż
(1−z)2 with a similar formula for v̇, which give 4 u̇2+v̇2

1+u2+v2 =
1

(1−z)2

(

(1− z)2(ẋ2 + ẏ2) + (x2 + y2)ż2 + 2(xẋ+ yẏ)ż(1− z)
)

. Using

x2+y2 = 1−z2, which implies xẋ+yẏ = −zż, this expression simplifies

to ẋ2+ ẏ2+ ż2. Hence, the length of Π◦γ calculated using the given first

fundamental form on R2 is
∫

2
√
u̇2+v̇2

1+u2+v2 dt =
∫
√

ẋ2 + ẏ2 + ż2dt, which is

the length of γ. Hence, Π is an isometry.

11.4.1 Let l and m be two distinct hyperbolic lines in H that do not intersect

at any point of H. If l and m are both half-lines they are parallel as

they do not have a common perpendicular. If at least one of l and m is

a semicircle, then l and m are parallel if they intersect at a point of the

real axis, and ultra-parallel otherwise.

11.4.2 We work in H and assume that l is the imaginary axis (by applying

a suitable isometry). If a = v + iw, the semicircle geodesic through

a intersects l at i
√
v2 + w2 = ir, say. The distance of a from l is

2tanh−1
∣

∣

∣

ir−v−iw
ir−v+iw

∣

∣

∣. Setting this equal to a constant, say D, gives (after

some algebra) v2/w2 = 2 sinh2(D/2). This is the equation of a pair of

lines passing through the origin. As they are not perpendicular to the

real axis (unless D = 0), they are not hyperbolic lines.

11.4.3 We work in DP . By applying an isometry we can assume that a is the

origin and b > 0. Suppose that the hyperbolic triangle with vertices

a, b, and c has internal angles α, β, and γ, and assume that Re(c) > 0.
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d

ba

c

®

C

°

¡

¯

1/b

The hyperbolic line through b and c is part of a circle Γ with

centre d and radius r, say. The line through b and d makes an an-

gle π/2 − β with the real axis, so d = b + r sinβ + ir cosβ. Sim-

ilarly, d = c + r sin(α + γ) − ir cos(α + γ) = c + r sin(A + β) +

ir cos(A + β) using A = π − α − β − γ. Writing c = v + iw we get v =

b− r sinA cosβ+ r(1− cosA) sinβ, w = r(1− cosA) cos β+ r sinA sinβ.

Then, v(1 − cosA) + w sinA = (b + 2r sinβ)(1 − cosA). But, since

γ intersects the boundary C of DP perpendicularly, r2 + 1 = |d|2 =

(b+r sinβ)2+r2 cos2 β = r2+b2+2br sinβ, so 2br sinβ = 1−b2. Hence,

v(1 − cosA) + w sinA = 1−cosA
b . This is the equation of a straight line

that intersects the real axis at 1/b and makes an angle A/2 with the

(negative) real axis. The set of points c for which the triangle with

vertices a, b, c has area A is the union of this line together with its

reflection in the real axis. These lines are not hyperbolic lines as they

do not pass through the origin.

11.5.1 From Example 6.3.5, Π−1(v, w) =
(

2v
v2+w2+1 ,

2w
v2+w2+1 ,

v2+w2−1
v2+w2+1

)

, so

K(v, w) = 2(v,w)
v2+w2+1 .

11.5.2 From Appendix 2, every Möbius transformation is a composite of trans-

formations of the form z �→ 1/z, z �→ z + λ, z �→ λz (where λ �= 0

in the last case). Hence, it suffices to establish Eq. 11.11 when M

is of this form. For the last two types this is obvious; for the first,

(a−1, b−1; c−1, d−1) = (a−1−c−1)(b−1−d−1)
(a−1−d−1)(b−1−d−1) = (a, b; c, d) on multiplying

numerator and denominator by abcd. This argument is only valid pro-

vided none of a, b, c, and d is 0 or∞, but a similar argument works in the

other cases. For example, if a = ∞ but b, c, d �= 0, we have to show that
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(0, b−1; c−1, d−1) = (∞, b; c, d). This is proved by multiplying numerator

and denominator of (0, b−1; c−1, d−1) = −c−1(b−1−d−1)
−d−1(b−1−c−1) by bcd.

If M : C� → C� is a bijection satisfying Eq. 11.11, let b, c, d ∈ C�
be such that M(b) = 1,M(c) = 0,M(d) = ∞. Then, M(z) =

(M(z), 1; 0,∞) = (M(z),M(b);M(c),M(d)) = (z, b; c, d), so M is a

Möbius transformation.

11.5.3 It is enough to prove the existence when a′ = ∞, b′ = 0, c′ = 1.

For if M and M ′ are Möbius transformations taking (a, b, c) and

(a′, b′, c′) to (∞, 0, 1), then M ′−1 ◦M is a Möbius transformation taking

(a, b, c) to (a′, b′, c′). But M(z) = (a, b; c, z) is a Möbius transforma-

tion that takes (a, b, c) to (∞, 0, 1). For the uniqueness, note that if

M is a Möbius transformation that takes (a, b, c) to (∞, 0, 1), then

M(z) = (∞, 0; 1,M(z)) = (a, b; c, z).

11.5.4 (a,−1/ā; b,−1/b̄) =
(a−b)(− 1

ā + 1
b̄
)

(a+ 1
b̄
)(− 1

ā −b)
= (a−b)(b̄−ā)

(1+āb)(1+ab̄)
= −

∣

∣

∣

a−b
1+āb

∣

∣

∣

2

=

− tan2 1
2d by Proposition 6.5.2.

11.5.5 The reflection in the line through the origin making an angle θ with

the real axis is R (z) = e2iθ z̄. Then, K (R (z)) = 2e2iθ z̄
|z|2+1 = e2iθK (z) =

R (K (z)).

11.5.6 This follows from Exercises 11.3.5 and 11.5.5 and Proposition 11.5.4.

Chapter 12

12.1.1 κ1 + κ2 = 0 =⇒ κ2 = −κ1 =⇒ K = κ1κ2 = −κ2
1 ≤ 0. K = 0 ⇐⇒ κ2

1 =

0 ⇐⇒ κ1 = κ2 = 0 ⇐⇒ the surface is an open subset of a plane (by

Proposition 8.2.9).

12.1.2 From Eq. 8.15, σλ
u×σλ

v = (1−λκ1)(1−λκ2)σu×σv, where κ1, κ2 are the

principal curvatures of σ. Since σ is minimal, κ2 = −κ1 so A
σ

λ(U) =
∫

U (1−λ2κ2
1)‖σu×σv ‖dudv = Aσ(U)−λ2

∫

Uκ
2
1 ‖σu×σv ‖dudv. Since

the integrand in the last integral is ≥ 0 everywhere, the stated inequality

follows. Equality holds ⇐⇒ the last integral vanishes, which happens

⇐⇒ the integrand vanishes everywhere, i.e., ⇐⇒ κ1 = 0 everywhere. In

that case κ2 = −κ1 = 0 also, and σ is an open subset of the plane by

Proposition 8.2.9.

12.1.3 By Proposition 8.6.1, a compact minimal surface would have K > 0 at

some point, contradicting Exercise 12.1.1.
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12.1.4 The first part follows from Exercises 6.1.2 and 7.1.4. The map which

wraps the plane onto the unit cylinder (Example 6.2.4) is a local isom-

etry, but the plane is a minimal surface and the cylinder is not.

12.2.1 By the solution of Exercise 8.1.2, the helicoid σ(u, v) =

(v cosu, v sinu, λu) has E = λ2 + v2, F = 0, G = 1, L = 0,M =

��(�2 + v2)1/2, N =0, so H = LG−2MF+NG
2(EG−F 2) =0.

12.2.2 Calculation shows that the first and second fundamental forms of σt are

cosh2 u(du2 + dv2) and − cos t du2− 2 sin t dudv+cos t dv2, respectively,

so H = − cos t cosh2 u+cos t cosh2 u
2 cosh4 u

=0.

12.2.3 From Example 5.3.1, the cylinder can be parametrized by σ(u, v) =

γ(u) + va, where γ is unit-speed, ‖ a ‖= 1 and γ is contained in a

plane Π perpendicular to a. We have σu = γ̇ = t (a dot denoting

d/du), σv = a, so E = 1, F = 0, G = 1; N = t × a, σuu = ṫ = �n,

σuv = σvv = 0, so L = �n · (t × a), M = N = 0. Now t × a is a

unit vector parallel to Π and perpendicular to t, hence parallel to n;

so L = ±� and H = ±��2. So H = 0 ⇐⇒ � = 0 ⇐⇒ γ is part of a

straight line ⇐⇒ the cylinder is an open subset of a plane.

12.2.4 The first fundamental form is (cosh v + 1)(cosh v − cosu)(du2 + dv2),

so σ is conformal. By Exercise 8.5.1, to show that σ is minimal

we must show that σuu + σvv = 0; but this is so, since σuu =

(sinu cosh v, cosu coshv, sin u
2 sinh v

2 ) = −σvv.

(i) σ(0, v) = (0, 1 − cosh v, 0), which is the y-axis. Any straight line is

a geodesic. (ii) σ(π, v) = (π, 1 + cosh v,−4 sinh v
2 ), which is a curve in

the plane x = π such that z2 = 16 sinh2 v
2 = 8(cosh v − 1) = 8(y − 2),

i.e., a parabola. The geodesic equations are d
dt (Eu̇) = 1

2Eu(u̇
2 + v̇2),

d
dt (Ev̇) = 1

2Ev(u̇
2+ v̇2), where a dot denotes the derivative with respect

to the parameter t of the geodesic and E = (cosh v + 1)(cosh v− cosu).

When u = π, the unit-speed condition is Ev̇2 = 1, so v̇ = 1/(cosh v+1).

Hence, the first geodesic equation is 0 = 1
2Euv̇

2, which holds because

Eu = sinu(cosh v + 1) = 0 when u = π; the second geodesic equation is
d
dt (cosh v + 1) = (cosh v + 1) sinh v v̇2 = sinh v v̇, which obviously holds.

(iii) σ(u, 0) = (u − sinu, 1 − cosu, 0), which is the cycloid of Exercise

1.1.7 (in the xy-plane, with a = 1 and with t replaced by u). The second

geodesic equation is satisfied because Ev = sinh v(2 cosh v+1−cosu) = 0

when v = 0. The unit-speed condition is 2(1 − cosu)u̇2 = 1, so u̇ =

1/2 sin u
2 . The first geodesic equation is d

dt (4 sin
2 u

2 u̇) = sinuu̇2, i.e.,
d
dt (2 sin

u
2 ) = cos u

2 u̇, which obviously holds.

12.3.1 (i) From the proof of Theorem 12.3.2, the Gauss map is conformal ⇐⇒
W 2 = �·id, where � is a smooth function on S. IfH �= 0 at p, thenH �= 0
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on an open subset O of S containing p. By Exercise 8.1.6,W = �2+K
2H ·id,

so every point of O is an umbilic and O is an open subset of a plane or a

sphere by Proposition 8.2.9. Since H �= 0 the planar case is impossible.

Part (ii) is now obvious. For (iii), assume that S is not minimal. Then,

there is a point p ∈ S at which H �= 0, say H = μ. The argument in

(i) and (ii) shows that the set Sµ of points of S at which H = μ is a

(non-empty) open subset of S; it is also a closed subset because H is a

continuous function on S. Since S is connected, Sµ = S. Hence, every
point of S is an umbilic, and so S is an open subset of a sphere (the

planar case is impossible as μ �= 0).

12.3.2 (i) From Example 12.1.4, N = (−sechu cos v,−sechu sin v, tanhu).

Hence, if N(u, v) = N(u′, v′), then u = u′ since u → tanhu is injective,

so cos v = cos v′ and sin v = sin v′, hence v = v′; thus, N is injective. If

N = (x, y, z), then x2 + y2 = sech2u �= 0, so the image of N does not

contain the poles. Given a point (x, y, z) ∈ S2 other than the poles, let

u = ±sech−1
√

x2 + y2, the sign being that of z, and let v be such that

cos v = −x/
√

x2 + y2, sin v = −y/
√

x2 + y2; then, N(u, v) = (x, y, z).

(ii) By the solution of Exercise 8.1.2, N=(λ2+v2)−1/2(−λ sinu, λ cosu,

−v). Since N(u, v) = N(u + 2kπ, v) for all integers k, the infinitely

many points σ(u+2kπ, v) = σ(u, v)+(0, 0, 2kπ) of the helicoid all have

the same image under the Gauss map. (Of course, this is geometrically

obvious because the helicoid itself is left unchanged by the translation by

2π parallel to the z-axis.) If N = (x, y, z), then x2+y2 = �2/(�2+v2) �=
0, so the image of N does not contain the poles. If (x, y, z) ∈ S2 and

x2 + y2 �= 0, let v = −��/
√

x2 + y2 and let u be such that sinu =

−x/
√

x2 + y2, cosu = −y/
√

x2 + y2; then N(u, v) = (x, y, z).

12.4.1 By Proposition12.3.2, ifK �= 0 the Gauss map G : S → S2 is a conformal

local diffeomorphism. Let R be a rotation of R3 about the origin that

takes G(p) to the south pole of S2 (or any point other than the north

pole). There is an open subset O of S containing p such that G(O) does

not contain the north pole. By Example 6.3.5, Π ◦R ◦ G is a conformal

diffeomorphism from O to an open subset U of R2. The inverse of this

diffeomorphism is the desired surface patch σ.

12.5.1 ϕ = σu − iσv = (1 − u2 + v2 − 2iuv, 2uv − i(1 − v2 + u2), 2u + 2iv)

= (1−ζ2,−i(1+ζ2), 2ζ). So the conjugate surface is, up to a translation,

σ̃(u, v) = Re
∫

(i(1−ζ2), 1+ζ2, 2iζ) dζ =Re

(

i
(

ζ − ζ3

3

)

, ζ + ζ3

3 , iζ2
)

=
(

−v + u2v − v3

3 , u+ u3

3 − uv2,−2uv
)

. Let U = (u−v)/
√
2, V = (u+v)

/
√
2, σ̃(U, V ) = σ(u, v); then,
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σ̃(U, V ) =

(

1√
2

(

U − V + UV 2 − U2V +
1

3
V 3 − 1

3
U3

))

,

1√
2

(

U + V + UV 2 + U2V − 1

3
V 3 − 1

3
U3

)

, U2 − V 2 ) .

Applying the π/4 rotation (x, y, z) →
(

1√
2
(x+ y), 1√

2
(y − x), z

)

to

σ̃(U, V ) then gives
(

U − 1
3U

3 + UV 2, V − 1
3V

3 + U2V, U2 − V 2
)

, which

is Enneper’s surface again.

12.5.2 ϕ =
(

1
2 (1− ζ−4)(1− ζ2), i

2 (1− ζ−4)(1 + ζ2), ζ(1 − ζ−4)
)

, so

σ = Re

(

1

2

(

ζ − ζ3

3
− ζ−1 +

ζ−3

3

)

,

i

2

(

ζ +
ζ3

3
+ ζ−1 +

ζ−3

3

)

,
ζ2

2
+

ζ−2

2

)

= Re

(

−1

6
(ζ − ζ−1)3,

i

6
(ζ + ζ−1)3,

1

2
(ζ + ζ−1)2

)

,

up to a translation. Put ζ = eζ̃ , ζ̃ = ũ + iṽ. Then, σ(u, v) = σ̃(ũ, ṽ),

where σ̃(ũ, ṽ) =

Re

(

−4

3
sinh3 ζ̃ ,

4i

3
cosh3 ζ̃, 2 cosh2 ζ̃

)

=

(

4 sinh ũ cos ṽ(cosh2 ũ sin2 ṽ − 1

3
sinh2 ũ cos2 ṽ) ,

4 sinh ũ sin ṽ(
1

3
sinh2 ũ sin2 ṽ − cosh2 ũ cos2 ṽ),

2(cosh2 ũ cos2 ṽ − sinh2 ũ sin2 ṽ)

)

.

12.5.3 The first part is obvious. (i) If a ∈ R, the identity σa
u−iσq

v = a(σu−iσv)

implies that σa = aσ + a, where a is a constant vector. Hence, σa is

obtained from σ by applying the dilation Da followed by the transla-

tion Ta (Appendix 1). (ii) If f and g are the functions in the Weierstrass

representation of σ (Proposition 12.5.4), those in the Weierstrass rep-

resentation of σa are af and g (see Eq. 12.22). By Eq. 12.25, replac-

ing f by af leaves the first fundamental form unchanged, so the map

σ(u, v) → σa(u, v) is an isometry, and by Eq. 12.26 N does not depend

on f , so the tangent planes of σ and σa at corresponding points are

parallel.
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12.5.4 We have σeit

u −iσeit

v = eit(σu−iσv). Since σ(u, v) = (coshu cos v, coshu

sin v, u), we get σeit

u = (cos t sinhu cos v−sin t coshu sin v, sin t coshu cos v

+ cos t sinhu sin v, cos t), σeit

v = (− cos t coshu sin v − sin t sinhu cos v,

cos t coshu cos v − sin t sinhu sin v,− sin t). Integrating gives σeit(u, v)

= cos t(coshu cos v, coshu sin v, u)+sin t(− sinhu sin v, sinhu cos v,−v) =

cos tσ(u, v) + sin tσ̂(u, v), say (up to a translation). In the notation of

Exercise 6.2.3, σ̃(sinhu, π
2 + v) = (− sinhu sin v, sinhu cos v, π

2 + v).

Reflecting in the xy-plane and then translating by π/2 along the z-axis

takes σ̃(sinhu, π2 + v) to σ̂(u, v).

12.5.5 (i) ϕ is never zero since we have arranged that F ′ and G′ are never both

zero. Condition (ii) in Theorem 12.5.2 is obvious. When v = 0, F ′(z) =
∂
∂uF (u, 0) = Fu, etc, so

d
duσ(u, 0) = (ḟ , ġ, 0) = γ̇ (a dot denoting d/du).

This proves (ii). When v = 0, ϕ = (ḟ , ġ, i

√

ḟ2 + ġ2). Using Eq. 12.26,

N = (−ġ, ḟ , 0)/

√

ḟ2 + ġ2). Then, N× γ̇ = (0, 0,−

√

ḟ2 + ġ2) and finally

γ̈ · (N× γ̇) = 0. It follows that γ is a pre-geodesic on σ (Exercise 9.1.2).

If γ is the cycloid, F (z) = z − sin z,G(z) = 1 − cos z, so σu − iσv =

ϕ = (1− cos z, sin z, 2i sin z). This gives

σu = (1− cosu coshv, sinu cosh v,−2 cos u
2 sinh v

2 )

σv = (− sinu sinh v,− cosu sinh v,−2 sin u
2 cosh v

2 ).

Integrating gives

σ(u, v) = (u − sinu cosh v,− cosu cosh v,−4 sin
u

2
sinh

v

2
),

up to a translation. Translating by (0, 1, 0) gives Catalan’s surface.

Chapter 13

13.1.1 If γ is a simple closed geodesic, Theorem 13.1.2 gives
∫

int(γ)KdA = 2π;

since K ≤ 0, this is impossible. The parallels of a cylinder are not the

images under a surface patch σ : U → R3 of a simple closed curve π

in the plane such that int(π) is contained in U . Note that the whole

cylinder can actually be covered by a single patch (see Exercise 4.1.4)

in which U is an annulus, but that the parallels correspond to circles

going ‘around the hole’ in the annulus.

13.1.2 Since the unit normal N of S2 is equal to ±n, the geodesic curvature �g

of n is, up to a sign, n′′ ·(n×n′). Let t be the arc-length of γ and denote
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d/dt by a dot. Then, ds/dt = ‖ ṅ ‖= ‖ −�t + τb ‖=
√
�2 + τ2 = R,

say, where t = γ̇. Then, n′ = (−�t+ τb)/R, n×n′ = (�b+ τt)/R, and

n′′ = 1
R

d
dt

(

−κt+τb
R

)

= −R−1(���)˙t + R−1(τ/R)˙b − R−2(�2 + τ2)n.

These formulas give n′′ · (n × n′) = −R−2τ(���)˙ + R−2�(τ/R)˙ =

(�τ̇ − τ �̇)/R3. Since �̇ = Rκ′, etc., κg = ±κτ ′−τκ′

κ2+τ2 = ± d
ds tan

−1 τ
κ .

Applying Theorem 13.1.2 to the curve n on S2, and noting that K = 1

for S2 and that
∫ ℓ(n)

0
κg dt = 0 because κg is the derivative of an ℓ(n)-

periodic function (where ℓ(n) is the length of the closed curve n), we

get that the area inside n is 2π.

u = u
2

u = u
1A

B

13.2.1 The parallel u = u1 is the circle γ1(v) = (f(u1) cos v, f(u1) sin v, g(u1));

if s is the arc-length of γ1, ds/dv = f(u1). Denote d/ds by a dot and

d/du by a dash. Then, γ̇ = (− sin v, cos v, 0), γ̈ = − 1
f(u1)

(cos v, sin v, 0),

and the unit normal of the surface is N = (−g′ cos v,−g′ sin v, f ′).

This gives the geodesic curvature of γ as �g = γ̈ · (N × γ̇) = f ′(u1)
f(u1)

.

Since ℓ(γ1) = 2πf(u1),
∫ ℓ(γ1)

0
�g ds = 2πf ′(u1). Similarly for γ2. By

Example 8.1.4, K = −f ′′/f , so
∫

R
KdAσ =

∫ 2π

0

∫ u2

u1
− f ′′

f fdudv =

2π(f ′(u1)− f ′(u2)). Hence,
∫ ℓ(γ1)

0
�g ds−

∫ ℓ(γ2)

0
�g ds =

∫

RKdAσ . This

equation is the result of applying Theorem 13.2.2 to the curvilinear

polygon shown above.

13.3.1 This can be proved by expressing a,b, c in component form and com-

puting both sides. Alternatively, one may observe that both sides of the

equation are linear in each of a, b, and c (separately), and change sign

when any two of a,b, and c are interchanged. This means that it is
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enough to prove the formula when a = i,b = j, c = k, when both sides

are obviously equal to 1.

13.3.2 Define ϕk as in the hint. The stated properties are easily checked.

13.4.1 By Corollary 13.4.8,
∫

S
KdA = 4π(1 − g), and g = 1 since S is diffeo-

morphic to T1. By Proposition 8.6.1, K > 0 at some point of S.
13.4.2 K > 0 =⇒

∫

S
KdA > 0 =⇒ g < 1 by Corollary 13.4.8; since g is a non-

negative integer, g = 0 so S is diffeomorphic to a sphere. The converse is

false: for example, a ‘cigar tube’ is diffeomorphic to a sphere but K = 0

on the cylindrical part.

13.5.1 Assuming that every country has ≥ six neighbours, the argument in the

proof of Theorem 13.5.1 gives E ≥ 3F and 2E ≥ 3V , so V − E + F ≤
2E
3 − E + E

3 = 0, contradicting V − E + F = 2.

13.5.2 3F = 2E because each face has three edges and each edge is an edge of

two faces. From χ = V −E+F , we get χ = V −E+ 2
3E, so E = 3(V −χ).

Since each edge has two vertices and two edges cannot intersect in more

than one vertex, E ≤ 1
2V (V − 1); hence, 3(V − χ) ≤ 1

2V (V − 1), which

is equivalent to V 2 − 7V + 6χ ≥ 0. The roots of the quadratic are
1
2

(

7±√
49− 7χ

)

, so V ≤ 1
2

(

7−√
49− 7χ

)

or V ≥ 1
2

(

7 +
√
49− 7χ

)

.

Since χ = 2, 0,−2, . . . , the first condition gives V ≤ 3, which would

allow only one triangle; hence, the second condition must hold.

13.6.1 The circle θ = θ0 is a circle in the plane z = b sin θ0 with centre on

the z-axis, so its principal normal is a unit vector perpendicular to the

circle and in this plane, hence equal (up to a sign) to (cosϕ, sinϕ, 0).

The unit normal of σ is N = (− cos θ cosϕ,− cos θ sinϕ,− sin θ), so the

angle between N and n at a point of the circle θ = θ0 is θ0. The radius

of the circle is a+ b cos θ0, so its geodesic curvature is sin θ0
a+b cos θ0

. Hence,
∫

κgds = 2π sin θ0 and the holonomy is 2π − 2π sin θ0. The circles ϕ =

constant are geodesics (as they are meridians on a surface of revolution)

so κg = 0 and the holonomy is 2π − 0 = 2π.
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13.6.2 For the circle v = 1 on the cone, the radius is 1 and the angle between

the principal normal n of the circle and the unit normal N of the cone

is π/4, so the holonomy is 2π − 2π/
√
2 = (2 −

√
2)π. The cone is flat

so if the converse of Proposition 13.6.5 were true the holonomy around

any closed curve on the cone would be zero.

13.7.1 Take the reference tangent vector field to be � = (1, 0), and take the

simple closed curve γ(s) = (cos s, sin s). At γ(s), we have V = (α, β),

where

α+ iβ =

�
(cos s+ i sin s)k if k > 0,

(cos s− i sin s)−k if k < 0.

By de Moivre’s theorem, α = cos ks, β = sin ks in both cases. Hence,

the angle ψ between V and � is equal to ks, and Definition 13.7.2 shows

that the multiplicity is k.

13.7.2 If σ(u, v) = σ̃(ũ, ṽ), where (ũ, ṽ) → (u, v) is a reparametrization map,

then V = ασu + βσv = α̃σ̃ũ + β̃σ̃ṽ =⇒ α̃ = α∂ũ
∂u + β ∂ṽ

∂u , β̃ = α∂ũ
∂v +

β ∂ṽ
∂v . Hence, α̃ and β̃ are smooth if α and β are smooth. Since the

components of the vectors σu and σv are smooth, if V is smooth so are

its components. If the components of V = ασv + βσv are smooth, then

V · σu and V · σv are smooth functions, hence α = G(V·σu)−F (V·σv)
EG−F 2 ,

β = E(V·σv)−F (V·σu)
EG−F 2 are smooth functions, so V is smooth.

13.7.3 If ψ̃ is the angle between V and ξ̃, we have ψ̃ − ψ = θ (up to multiples

of 2π); so we must show that
∫ ℓ(γ)

0
θ̇ ds = 0 (a dot denotes d/ds). This is

not obvious since θ is not a well-defined smooth function of s (although

dθ/ds is well defined). However, ρ = cos θ is well defined and smooth,

since ρ = ξ.ξ̃/ ‖ ξ ‖‖ ξ̃ ‖. Now, ρ̇ = −θ̇ sin θ, so we must prove that
∫ ℓ(γ)

0
ρ̇√
1−ρ2

ds = 0. Using Green’s theorem, this integral is equal to

∫

π

ρudu+ ρvdv
√

1− ρ2
=

∫

int(π)

(

∂

∂u

(

ρv
√

1− ρ2

)

− ∂

∂v

(

ρu
√

1− ρ2

))

dudv,

where π is the curve in U such that γ(s) = σ(π(s)); and this line

integral vanishes because

∂

∂u

(

ρv
√

1− ρ2

)

=
∂

∂v

(

ρu
√

1− ρ2

)

(

=
ρuv(1 − ρ2) + ρρuρv

(1− ρ2)3/2

)

.

13.8.1 Let F : S → R be a smooth function on a surface S, let p ∈ S, let σ and

σ̃ be patches of S containing p, say σ(u0, v0) = σ̃(ũ0, ṽ0) = p, and let

f = F ◦ σ and f̃ = F ◦ σ̃. Then, f̃ũ = fu
∂u
∂ũ + fv

∂v
∂ũ , f̃ṽ = fu

∂u
∂ṽ + fv

∂v
∂ṽ ,

so if fu = fv = 0 at (u0, v0), then f̃ũ = f̃ṽ = 0 at (ũ0, ṽ0).
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Since fu = fv =0 at p, we have f̃ũũ = fuu
(

∂u
∂ũ

)2
+2fuv

∂u
∂ũ

∂v
∂ũ+fvv

(

∂v
∂ũ

)2
,

with similar expressions for f̃ũṽ and f̃ṽṽ. This gives, in an obvious no-

tation, H̃ = J tHJ , where J =

(

∂u
∂ũ

∂u
∂ṽ

∂v
∂ũ

∂v
∂ṽ

)

is the Jacobian matrix of

the reparametrization map (ũ, ṽ) �→ (u, v).

Since J is invertible, H̃ is invertible if H is invertible. Since the matrix H
is real and symmetric, it has eigenvectors v1,v2, with eigenvalues λ1, λ2,

say, such that vt
ivj = 1 if i = j and = 0 if i �= j. Then, if v = α1v1+α2v2

is any vector, where α1, α2 are scalars, vtHv = λ1α
2
1 + λ2α

2
2; hence,

vtHv > 0 (resp. < 0) for all v �= 0 ⇐⇒ λ1 and λ2 are both > 0 (resp.

both < 0) ⇐⇒ p is a local minimum (resp. local maximum); and hence

p is a saddle point ⇐⇒ vtHv can be both > 0 and < 0, depending on

the choice of v. Since J is invertible, a vector ṽ �= 0 ⇐⇒ v = J ṽ �= 0;

and ṽtH̃ṽ = ṽtJ tHJ ṽ = vtHv. The assertions in the last sentence of

the exercise follow from this.

13.8.2 (i) fx = 2x− 2y, fy = −2x+ 8y, so fx = fy = 0 at the origin. fxx = 2,

fxy = −2, fyy = 8, so H =

(

2 −2

−2 8

)

. H is invertible so the origin

is non-degenerate; and the eigenvalues 5±
√
13 of H are both > 0, so it

is a local minimum. (ii) fx = fy = 0 and H =

(

2 4

4 0

)

at the origin;

detH = −16 < 0, so the eigenvalues of H are of opposite sign and the

origin is a saddle point. (iii) fx = fy = 0 and H = 0 at the origin, which

is therefore a degenerate critical point.

13.8.3 Using the parametrization σ in Exercise 4.2.5 (with a = 2, b = 1) gives

f(θ, ϕ) = F (σ(θ, ϕ)) = (2 + cos θ) cosϕ + 3. Then, fθ = − sin θ cosϕ,

fϕ = −(2 + cos θ) sinϕ; since 2 + cos θ > 0, fϕ = 0 =⇒ ϕ = 0

or π, and then fθ = 0 =⇒ θ = 0 or π; so there are four critical

points, p = (3, 0, 0), q = (1, 0, 0), r = (−1, 0, 0) and s = (−3, 0, 0).

Next, H =

(

− cos θ cosϕ sin θ sinϕ

sin θ sinϕ −(2 + cos θ) cosϕ

)

=

(

−1 0

0 −3

)

at p,

=

(

1 0

0 −1

)

at q, =

(

−1 0

0 1

)

at R, and =

(

1 0

0 3

)

at s; hence,

p is a local maximum, q and r are saddle points, and s is a local mini-

mum (all of which is geometrically obvious).
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A

Allowable surface patch, 77, 83
Angle, 133
Angle of parallelism, 292
Anti-holomorphic, 321
Archimedes’ Theorem, 144
Arc-length, 10, 14
Area
– contained by acurve, 58
– of a geodesic circle, 256
– of a hyperbolic circle, 277, 280
– of a hyperbolic polygon, 273,

295, 345
– of a parallel surface, 311
– of a spherical circle, 157, 177
– of a spherical triangle, 145, 345
– of a surface, 139–141, 182
Astroid, 4, 7, 407
Asymptotic curve, 170, 206
Atlas, 68, 77

B

Beltrami-Klein model, 200, 295–304
Beltrami-Klein distance, 302
Beltrami’s theorem, 267
Bifurcation, 368
Bilinear form, 379
Binormal, 46
Bounded, 56, 109

C
Catalan’s surface, 319–320, 333
Catenary, 12, 44

Catenoid, 108, 132, 257, 328
– as a minimal surface, 307–309,

312, 319
Cauchy-Riemann equations, 139, 325
Cayley sextic, 22
Centre of curvature, 44
Chebyshev net, 126, 259
Christoffel symbols, 172
Chromatic number, 358
– of a sphere, 359
– of a torus, 361
Circle (capital C!), 393
Circular cone, 73, 131
Circular cylinder, 69, 365
Cissoid, 18, 19
Clairaut’s theorem, 228
Closed curve, 20
Closed set, 109
Codazzi-Mainardi equations, 247–248
Colouring, 357
Compact set, 109
Compact surface, 109, 111
Complex plane, 137
Conformal
– diffeomorphisms, 134, 137–139
– map, 134, 136, 138
– model, 270, 284, 297
– parametrization, 134, 138, 322
– surface patch, 134, 138, 322
Congruent, 155, 157, 276
Conjugate-Möbius transformation, 395

469
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Connected
– curve, 25–26,
– surface, 80
Continuous, 68
Convex, 62
Cornu’s spiral, 42
Cosine rule, 152, 287–288
Covariant derivative, 171
Critical point, 372
Cross-ratio, 300
Curvature
– of a catenary, 34, 44
– of a curve, 30, 31, 44, 52
– of a helix, 33
– of an astroid, 34
– of a surface, 179, 187
Curve, 2, 4
Curvilinear polygon, 342
Cusp, 18–19, 132
Cycloid, 8, 45

D

Derivative, 4, 87
Diagonalizable, 381
Diffeomorphic, 83
Diffeomorphism, 83
Dilation, 392
Direct isometry, 385
Dot product, 11
Doubly-ruled, 76, 104
Dual triangles, 153
Dupin’s theorem, 196

E

Eccentricity, 8
Edge, 342
Eigenvalue, 380, 381
Eigenvector, 380, 381
Elementary isometry, 279
Ellipse, 7–8
Ellipsoid, 80, 98
Elliptic cylinder, 100
Elliptic paraboloid, 99
Elliptic point, 193, 212
Enneper’s surface, 138,

317–319, 331
Equiareal, 142
Euler number, 350, 354
Euler’s theorem, 188
Evolute, 45, 65
Extended complex plane,

137, 391
Exterior, 55–56

F
First fundamental form
– of a catenoid, 132
– of a generalized cone, 124
– of a generalized cylinder, 123–124
– of a geodesic patch, 243
– of a helicoid, 132
– of a plane, 123
– of a principal patch, 201
– of a pseudosphere, 200, 231
– of a sphere, 123
– of a surface, 122
– of a surface patch, 122, 125
– of a surface of revolution, 123
– of a tangent developable, 130
– of a torus, 194
Five neighbours theorem, 362
Flat surface, 186, 201–203
Foci, 8
Four colour conjecture, 359
Four vertex theorem, 63
Frenet-Serret equations, 50
Fresnel’s integrals, 42

G
Gauss-Bonnet theorem
– for compact surfaces, 351, 357
– for curvilinear polygons, 343
– for simple closed curves, 336
Gauss equations, 172, 248
Gaussian curvature, 179, 181, 185, 188,

196–199, 248, 252–253, 257, 259, 261,
262, 265, 320, 364

– of a catenoid, 185
– of compact surfaces, 212, 261
– of a cylinder, 182, 184
– of a helicoid, 185
– of a minimal surface, 311, 330
– of a parallel surface, 209
– of a plane, 182, 184
– of a ruled surface, 182
– of a sphere, 182, 184, 254
– of a surface of revolution, 181, 253
– of a torus, 186
Gauss’ lemma, 245
Gauss map, 162, 182, 184, 185, 320, 321,

332
– of a catenoid, 322
– of a generalized cone, 185
– of a helicoid, 322
– of a minimal surface, 321
– of a paraboloid, 165
Generalized cone, 106, 124, 129, 131,

185, 202, 203, 217
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Generalized cylinder, 105, 109, 123, 124,
126, 184, 202, 203, 217, 218, 317, 319

Generalized helix, 54
Generator, 104
Genus, 110–111
Geodesic, 215, 216, 237
– circle, 245, 256
– coordinates, 244
– curvature, 166, 169, 216
– equations, 220, 223
– local diffeomorphism, 263–265
– patch, 244
– polar patch, 244
Geodesics
– on a circular cylinder, 225–226
– on a circular cone, 226
– on a generalized cone, 217
– on a generalized cylinder, 217, 218
– on a helicoid, 226–227
– on a hyperboloid of one sheet, 219,

233–235
– on a plane, 217, 224
– on a pseudosphere, 230–232, 235
– on a sphere, 218, 221–222, 224
– on a spheroid, 235
– on a surface of revolution, 227, 228
– on a torus, 235
– on a tube, 219
Geodesically complete, 270
Gradient, 89, 372
Graph, 80, 119
Great circle, 51, 149, 218, 221–222,

239–241
Green’s theorem, 58

H
Heawood’s conjecture, 359, 361
Helicoid, 81, 132, 185, 195, 226–227, 254,

314, 315, 319, 328
Helix, 33, 54, 82, 130, 225–226
Henneberg’s surface, 331–332
Hilbert’s theorem, 270
Holomorphic, 139
Holonomy, 364
Homeomorphism, 68
Hyperbolic
– angle, 270
– area, 273
– circle, 277, 280
– cylinder, 100, 425
– distance, 272, 277, 282, 286
– geometry, 269–304
– isometry, 277–279, 282–283, 285, 287,

289, 297–298, 304

– length, 271
– line, 271, 287, 291, 293, 295, 296
– paraboloid, 99
– point, 193, 206, 212
– polygon, 273
Hyperboloid
– of one sheet, 75–76, 98, 114–115, 217,

219, 233–235
– of two sheets, 98, 114–115
Hyperplane, 386

I

Inner product, 380
Integral curve, 366
Interior, 56, 336
Inverse function theorem, 116
Inversion, 396–397
Involute, 45
Isometric deformation, 132
Isometry
– of a Euclidean space, 249, 383–390
– of a sphere, 155, 157
– of a surface, 126, 128, 138, 148,

225, 252
Isoperimetric inequality, 58

J

Jacobian matrix, 79, 116
Jacobi’s theorem, 341
Jordan curve theorem, 55

L

Latitude, 70
Latitude-longitude coordinates, 71
Length
– of a closed curve, 21
– of a curve, 10
– of a vector, 9
Level curve, 2, 23, 26, 27
Level surface, 95–96
Limaç con, 6, 22, 27, 56, 65
Line of curvature, 195–196, 220
Line of striction, 109, 132
Local diffeomorphism, 83, 88, 89
Local isometry, 126, 128, 138, 148,

225, 252
Locally isometric, 126
Local maximum, 374
Local minimum, 374
Logarithmic spiral, 10, 16
Longitude, 70
Lune, 145
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M

Maximal atlas, 78
Mean curvature, 179, 181, 185, 209, 262,

306–307
– of a parallel surface, 207, 209
– of a ruled surface, 315–316
– of a surface of revolution, 312
Mercator’s parametrization, 109, 138
Mercator’s projection, 109, 138
Meridian
– of a sphere, 70
– of a surface of revolution, 107, 195, 227
Meusnier’s theorem, 168
Minimal surface, 306, 311, 312, 315, 321,

322, 326, 330, 331
Möbius band, 90–93, 257
Möbius transformation, 139, 157,

282–283, 289, 303–304, 391–399
Monkey saddle, 194
Multiplicity, 366, 374

N

Non-degenerate, 373
Normal curvature, 166, 167, 169,

170, 189
Normal line, 9, 45
Normal section, 169, 218

O

Open ball, 68
Open disc, 68
Open interval, 2
Open subset, 68, 83
Opposite isometry, 385, 386
Orientable, 90, 93, 111, 139
Oriented angle, 92
Oriented surface, 90
Orthogonal, 380
Orthogonal matrix, 384
Orthonormal basis, 380
Osculating circle, 44

P

Parabolic cylinder, 100
Parabolic point, 194, 212
Parallel
– axiom, 269, 271
– curve, 44
– lines, 150, 291
– of a surface of revolution, 107, 195, 227
– surface, 207, 209, 211, 311

– tangent vector field, 230
– transport, 175–177, 364
Parameter curve, 86, 133–134
Parametrization
– of a curve, 2
– of a surface, 68
Parametrized curve, 2, 23, 26
Partition of unity, 348
Period, 20, 336
Periodic, 20
Perspectivity, 298, 304
Pitch, 33
Planar point, 194, 212
Plane curve, 2
Plateau’s problem, 305
Poincaré disc model, 200, 283–290
Point at infinity, 137
Positively-oriented, 56
Pre-geodesic, 219, 263
Principal
– curvature, 187–190, 193–194, 196
– normal, 46
– patch, 201
– vector, 187, 190
Profile curve, 107
Pseudosphere, 197–200, 230–232, 235,

241, 251, 257, 258, 263, 267, 269–270,
290, 345

Q

Quadratic form, 380
Quadric
– cone, 99
– surface, 97–104, 113–115

R

Radius of curvature, 44
Real Möbius transformation, 282–283
Reflection, 386–389
Reflection-rotation, 389
Regular
– curve, 13–16
– point, 13
– surface patch, 77, 78
Reparametrization, 13, 79
– map, 13, 79
Riemann surface, 139
Right-handed, 46
Rodrigues’ formula, 195
Rotation, 388, 389
Ruled surface, 104–105, 109, 315
Ruling, 104
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S

Saddle point, 374, 377
Scherk’s surface, 318
Second fundamental form
– of a cylinder, 161
– of an elliptic paraboloid, 162
– of a plane, 161
– of a sphere, 161
– of a surface, 160, 163–165
– of a surface of revolution, 161
– of a surface patch, 160–162,

167, 249
Self-adjoint, 380
Shortest path, 235–241
– on a plane, 12
– on a sphere, 148–150
Signed
– area, 184
– curvature, 35, 38–45, 63, 182
– unit normal, 35
Simple closed curve, 55–57, 336
Simply-connected, 326, 365
Sine-Gordon equation, 260–261, 263
Sine rule, 152, 289
Singular point, 13, 18
Sink, 368, 370
Six colour theorem, 362
Smooth
– curve, 4
– function, 76
– map, 83–85
– surface, 77
Soap bubble, 307
Soap film, 307
Source, 368, 370
Space curve, 2
Sphere, 70
Spherical
– circle, 157
– distance, 150–151, 304
– triangle, 145
Spheroid, 235
Standard unit normal, 89
Stationary point, 366–368
Stereographic projection, 136–137, 139
Surface, 68, 77
– of revolution, 107–108, 123, 161, 181,

196–200, 227–235, 253, 312–314
– patch, 68, 77
– variation, 305
Symmetric bilinear form, 379

T
Tangent developable, 129–130, 203
Tangent line, 5
Tangent plane, 86
Tangent space, 85
Tangent vector
– field, 170–171, 186, 365–366
– of a curve, 4
– to a surface, 85
Theorema Egregium, 252
Torsion, 47–53
Torus, 80–81, 110–111, 194–195, 235,

354–355, 361
Total
– curvature, 336
– signed curvature, 38, 57
Tractrix, 45, 199
Transition map, 74, 78, 117
Translation, 385–386
Triangulation, 349, 350
Triply-orthogonal system, 111–116, 196,

211
Tube, 81–82, 111, 219
Turning angle, 37–38, 57
Twisted cubic, 17

U
Ultra-parallel, 291, 293–295
Umbilic, 187, 181, 201
Umlaufsatz, 57, 338–340
Unitary Möbius transformation, 157
Unit cylinder, 69, 76, 77–78, 161, 182,

184, 191, 225–226
Unit normal, 90
Unit-speed, 11, 15–16
Unit sphere, 70–73, 75, 76, 78, 109,

123, 136–137, 139, 145, 148–157, 161,
177, 182, 184–185, 190, 221–222, 244,
264–265, 290

Upper half-plane model, 200, 270–283

V
Vertex
– of a cone, 73, 102
– of a curve, 62–65
– of a curvilinear polygon, 342
Viviani’s curve, 8, 54
Vortex, 368

W
Weierstrass’ representation, 328–329
Weingarten map, 163, 165, 180, 185, 187
Wirtinger’s inequality, 59, 61
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